Gelatin processing

Executive Summarv

1 The NOSB was petitioned to consider gelatin derived from fish used to clarify tea. Gelatin can be made from many 2 3 different sources of collagen. Cattle bones, hides, pigskins, and fish are the principle commercial sources. As such, it may

- 4 come from either agricultural or non-agricultural sources. Gelatin is also used as a fining agent in wine, and as a stabilizer, 5 thickener, and texturizer for a range of products. Gelatin can be used as either a processing aid or an ingredient. In some 6 cases, gelatin will comprise over 5% of a food.
- 7

8 Gelatin may be prepared in a way that is more like cooking and could be considered nonsynthetic. However, gelatin may

9 also be processed in ways that would render it synthetic. Some forms are chemically modified (e.g., cross-linked) or

10 possibly involve the use of substances derived from genetically modified organisms. These forms and processes are

considered excluded from this review. Irradiated gelatin is also not covered. Gelatin is often combined with other 11

ingredients. Each of these other ingredients would either need to appear on the National List or be from an organic source 12 13 to be used in a product labeled as 'organic.'

14

Unprocessed fish bladders, known as isinglass, are a possible substitute for more processed gelatin and may want to be 15 16 considered for a separate listing. Isinglass is covered under the current TAP review, although this is technically a different 17 substance from gelatin.

18

19 Two Reviewers recommended that gelatin be added to the National List. One recommended that it be prohibited for use in organic processing and handling.

49

National Organic Standards Board Technical Advisory Panel Review

Compiled by Organic Materials Review Institute for the USDA National Organic Program

- 20
- 21 22

Identification 23

- **Chemical Name:** gelatin 24
- 25

26 **Other Names:**

March 1, 2002

- bovine gelatin (type B gelatin), fish gelatin, porcine 27
- gelatin (type A gelatin), food-grade gelatin, edible 28
- gelatin, kosher fish gelatin, dried fish gelatin, bloom fish 29
- gelatin, HMW fish gelatin, isinglass(?), gelatine. 30
- 31
- **Trade Names (selected list):** 32
- Gelfoam, Puragel, Norland Fish Gelatin, Gel-caps, 33
- Emagel, Gelafusal, Gelatine, Gelita Sol E 34
- Gelita-Collagel, Gelita-Sol P. Gelita-Tec.Gelodan G. 35
- Gelofusine, Gelrite, Glutins (gelatins), Grindsted G 36
- GX 45L404, IK, IK (gelatin), K 16096, K 7598, Knox 37

- Unflavored Gelatin, KV 3000, KV 3000 (gelatin), KV 38
- 3029, M 394, M 396, M 400 (gelatin), MGP 9066 39
- Neosoft GE 82, Nikkol CCP 4, Nitta 750, Nittait GF 40
- 600A, Calfskin Gelatin, Crodyne BY-19, Flavorset® 41
- GP-2, Flavorset® GP-3, Gummi Gelatin P-5, Gummi 42
- Gelatin P-7, Gummi Gelatin P-8, Margarine Gelatin, 43

Page 1 of 25

- Quickset[®] D-4, Spa Gelatin, Tenderset[®] M-7, 44
- Tenderset[®] M-8, Tenderset[®] M-9; Biofine P-19[®] 45
- (isinglass), Hausengranulat Drifine[®] (isinglass). 46
- 47 CAS Number: 9000-70-8 48
- Other Codes: EINECS 2325546 50

51

63 Summary of TAP Reviewer Analysis¹

Agricultural /	Synthetic / Non-Synthetic:
Non-agricultural	
From fish:Non-agricultural (3-0)	From fish treatd with food acids: Non-synthetic (2-1)
Isinglass Non-agricultural (3-0)	Isinglass: (Not considered gelatin) Non-synthetic (2-1)
From cattle bones: Agricultural (2-1)	From cattle bones:Non-synthetic (2-1)
From tanned cattle hides: Non-agricultura	l (3-0) From tanned cattle hides: Synthetic (3-0)
From pigskins: Agricultural (2-1)	From pigskins: Non-synthetic (2-1)

64

65 **95% organic**

7570 Organic	
Allowed or	Suggested
Prohibited:	Annotation:
Allowed (2)	(1) From animal bones and animal skins prepared with agricultural products and items
Prohibited (1)	on the National List (7 CFR 205.605) and not chemically modified.
	(2) Allowed with the exception of hard gelatin capsule applications. No sulfur dioxide
	or hydrogen peroxide allowed in the process.
	(3) Prohibited without annotation.

67 made with organic

Allowed or	Suggested
Prohibited:	Annotation:
Allowed (2)	(1) From animal bones and animal skins prepared with agricultural products and items
Prohibited (1)	on the National List (7 CFR 205.605) and not chemically modified.
	(2) Allowed with the exception of hard gelatin capsule applications. No sulfur dioxide
	or hydrogen peroxide allowed in the process.
	(3) Prohibited without annotation.

68

66

69 Characterization

70 **Composition**:

Gelatin is a heterogeneous mixture of water-soluble proteins of high molecular weight (Budavari, 1996). On a dry weight basis, gelatin consists of 98 to 99% protein. The molecular weight of these large protein structures typically ranges between 20 000 and 250 000 (Kanner 1004) with some aggregate uniching in the milliong (Donne 1007)

- between 20,000 and 250,000 (Kennan, 1994), with some aggregates weighing in the millions (Poppe, 1997).
- 74

Coils of amino acids are joined together by peptide bonds. The predominant amino acid sequence is Gly-Pro-Hyp (Poppe, 1997). As a result, gelatin contains relatively high levels of these amino acids: glycine (Gly) 26-34%; proline (Pro) 10-18%;

and hydroxy proline (Hyp) 7-15% (Veis, 1964; Poppe, 1997). Other significant amino acids include: alanine (Ala) 8-11%;
arginine (Arg) 8-9%; aspartic acid (Asp) 6-7%; and glutamic acid (Glu) 10-12%. (Hudson, 1994; Poppe, 1997).

79

80 Gelatin is not a nutritionally complete protein. It contains no tryptophan and is deficient in isoleucine, threonine, and

methionine (Potter and Hotchkiss, 1998). The other sulfur-containing amino acids—cysteine and cystine—are deficient or absent as well. Percent of water will vary between 6 to 9% (Alais, 1991; US FDA, 1997a). Ash content is 0.1 to 3.25%

83 (Veis, 1964). 84

85 **Properties**:

Gelatin is nearly tasteless and odorless (Food Chemicals Codex, 1996). Physical and chemical properties noted: colorless
 or slightly yellow, transparent, brittle, odorless, tasteless sheets, flakes, or powder; soluble in hot water, glycerol, and acetic

- acid; and insoluble in organic solvents (Budavari, 1996). Gelatin swells and absorbs 5-10 times its weight of water to form
- a gel in aqueous solutions between 30-35°C. Gelatin extracted from fish will have a gel point in the range of 5-10°C.
- 90 (Food Chemicals Codex, 1996). These gels have increasing viscosity under stress (thixotrophic) and are thermally
- reversible. Gelatin has a unique protein structure that provides for a wide range of functional properties (Hudson, 1994).
- 92 These proteins form a compound (triple) helix in aqueous solution (Veis, 1965).

93

¹ This Technical Advisory Panel (TAP) review is based on the information available as of the date of this review. This review addresses the requirements of the Organic Foods Production Act to the best of the investigator's ability, and has been reviewed by experts on the TAP. The substance is evaluated against the criteria found in section 2119(m) of the OFPA [7 USC 6517(m)]. The information and advice presented to the NOSB is based on the technical evaluation against that criteria, and does not incorporate commercial availability, socio-economic impact or other factors that the NOSB and the USDA may want to consider in making decisions.

Gelatin is amphoteric (Budavari, 1996), meaning that it is neither acidic nor alkali, but possesses both properties
 depending on the nature of the solution. The pH at which gelatin's charge in solution is neutral is known as the isoelectric

point. The isoelectric point of gelatin ranges between 4.8 and 9.4, with acid processed gelatins having higher isoelectric
 points than alkali processed gelatins (Poppe, 1997).

98

Gelatin forms a gel at a minimum concentration of 0.5% through the pH range of 4 through 8. The pH in water solutions
for type A is between 4.5 and 6, and the pH range for type B is from 5 to 7 (see below for types) (US FDA, 1997a). Bloom
is an ascending index used to measure gel strength (Bloom, 1925). Commercial gelatin will vary from 90 to 300 grams
Bloom (Igoe, 1983).

102 bloom (1goe, 1983) 103

In addition to origin, fish gelatin is distinguished from beef or pork gelatin by its low melting point, low gelation

- temperature, and high solution viscosity. These physical properties are not as strongly correlated to Bloom strength (Levenbarger 1001). One study found fick gelstin to have similar physical and chemical properties compared to pore
- 106 (Leuenberger, 1991). One study found fish gelatin to have similar physical and chemical properties compared to porcine
- gelatin and to be rated superior in a blind sensory test (Choi and Regenstein, 2000).

109 How Made:

All manufacturing operations extract and hydrolyze collagen found in fish skins, bovine bone, and porcine skin with subsequent purification, concentration, and drying operations. These can be either simple or complicated operations.

112

113 Gelatin is formed during the simple cooking of meat, particularly in low-quality cuts that are high in collagen (Foegeding,

- et al., 1996). Collagen is an important product of rendering cattle and hog slaughter by-products (Boehme, 1982). Fish
- swim bladders are often simply dried to make isinglass (Ockerman, 1991; Leather et al., 1994; Hickman et al., 2000).
- 116 Various applications will require certain specific sources, or processing steps, to achieve certain functionalities or grades.

117 Some may be based on religious preference—e.g., porcine gelatin is forbidden for Halal or Kosher. Others depend on

- additional processing steps that provide an appropriate type, strength, viscosity, and water-absorption capacity. Comestible
- grades are selected based on (neutral) flavor and texture (Choi and Regenstein, 2000).
- Genetically engineered sources of collagen and gelatin are also being researched. At the present time, most of the research
- appears to involve transgenic animals that produce human collagen for grafting (Ferguson, 2001; Fibrogen, 2001). One
- 123 patented source of recombinant human collagen is expressed in milk of non-human animals (Berg, 1997). These are
- 124 intended for therapeutic and medical use to replace damaged human tissue. Another patent claims that collagen-like
- polypeptides are produced by yeast as the host organism (Weber and Herz, 1998). This would be suitable for conversion
- to gelatin, although it might also be considered a gelatin substitute. The intended application is for photography. At
- 127 present, it is unclear whether any GMO sources of collagen are commercially available.
- 128
- 129 Fish Gelatin Process
- 130 Gelatin is extracted from fish skins (Kosher) with heat and water and acetic acid (the acid found in vinegar) to control pH.
- 131 The soluble extract is filtered, concentrated by evaporation, dried, and milled into standard particle size (40 mesh), then
- blended and packaged (Kenney and Ross, no date). Various other food acids can be used, such as citric or lactic (Gómez-
- Guillén, M.C. and P. Montero. 2001). The source of the fish, including species and whether farmed or wild-caught, was
- not specified. Various species may be used, and a number of these species may be farmed. Alkali hydrolysis may speed the
- 135 process and increase Bloom strength, but alkali does not appear to be used in the manufacture of most fish-based fining
- gelatins. Sodium hydroxide appears to be the alkali of choice used by the exceptional alkali processors.
- 137 138 <u>Ising</u>
- <u>Isinglass</u>
 When fish bladders are dried, this forms a substance known as 'isinglass.' The bladders can come from either wild-caught
 or farmed fish. Sturgeon (Ockerman, 1991), channel catfish (Eun, Chung, and Hearnsberger, 1994), and tilapia, megrim,
 cod, and tuna (Gilsenan and Ross-Murphy, 2000) have all been used at various times. Commentators differ as to whether
- 141 cod, and tuna (Gisenan and Ross-Murphy, 2000) have an been used at various times. Commentators time as to whether 142 isinglass is a gelatin or a raw collagen. One food science reference defines isinglass as "[a] refined *gelatin* obtained from the
- 143 collagen of the outer layer of the dried swim bladder of a fish (e.g., sturgeon) and used as an edible jelly, to preserve eggs,
- and for clarifying wine and beer" (Ockerman, 1991, emphasis added; see also Light, 1989). Other sources consider it to be
- raw collagen, but indicate that the collagen can be turned into gelatin simply by heating, without a synthetic chemical
- reaction (Hickman, et al., 2000). Adding fruit juice and various spices, heating, cooling, and filtering can also reduce
- 147 isinglass to a stable, consistent gelatin (Cooper, 1845). Isinglass is unique among collagens in that it possesses many of the
- chemical and functional properties of gelatin without being denatured by processing with synthetics. Many common tests are unable to distinguish whether isinglass is a collagen or a gelatin. One study prepared a denatured gelatin from isinglass
- 150 by treatment in a waterbath at 60°C. (140°F.) (Leather, et al., 1994).
- by treatment in a waterbath at 60 °C. (140 °F.) (Leather, et al., 1994).
- 152 (Note: In 1995, the NOSB received a petition for isinglass that it did not refer to the TAP for review.)
- 153

- 154 Acid Pretreatment Process or Porcine Gelatin (Type A Gelatin)
- Acid pretreatment is invariably used for porcine gelatin. Pigskins are first dehaired, usually by a combination of steam, 155
- 156 rubber paddles, and flame (Farmer, et al., 1982). The pigskins may then be degreased by various methods, such as
- centrifuged in a rotating drum heated with steam to temperatures between 60° and 65° C. or approximately 150°-160°F. 157
- 158 (Hinterwaldner, 1977a). Petroleum-based solvents such as tetrachloroethylene (TCE) may also be used to degrease 159 animals, but this is less common than steam and mechanical methods because of safety and environmental issues (Norris,
- 160 1982). Hydrogen peroxide may be used to remove grease passed through a chopper or macerator to cut the skin into
- 161 uniform sizes (Keenan, 1994). The skins are then soaked at a pH of 1 to 4 with a food-grade mineral acid such as
- 162 hydrochloric (HCl), phosphoric (H₃PO₄), or sulfuric (H₂SO₄) acid for 8 to 30 hours (Hinterwaldner, 1977b; Keenan, 1994;
- 163 Cole, 2000; Ledward, 2000). This treatment causes the material to swell to two to three times its pre-treatment volume
- 164 (Ledward, 2000). The acid-treated pigskins are then washed with water to remove impurities. The skins are then extracted 165 with hot water and the extract is filtered through an anion-cation exchange column to reduce ash or mineral levels. The
- 166 gelatin extract is vacuum concentrated or ultra filtered to a concentration of between 15 and 35%, filtered, pH adjusted to
- 167 between 3.5 and 6, evaporated to 50% solids, sterilized at temperatures between 248-303°F. for up to 13 seconds, chilled
- 168 and extruded into noodles approximately 1/8 inch diameter, dried through a multi zone oven at 158°F., and milled to the
- 169 specified particle size and packaged (Hinterwaldner, 1977a). Acid pretreatment is sometimes used for beef ossein, but this
- 170 is relatively uncommon (Rose, 1990).
- 171

Alkali Process or Bovine Gelatin (Type B Gelatin) 172

Bovine gelatin is obtained from collagen from cattle, primarily hides and bones. In the U.S., 98% of the bone used for 173 174 gelatin extraction is obtained from USDA inspected plants and 2% is obtained from Argentina (US FDA, 1997a). If 175 chromium-tanned hides are used, steps are taken to remove the chromium from the hides (Rose, 1990). Because of the 176 mineral content of bones, a great deal more processing time is needed (Stainsby, 1987). The bone is crushed, cooked at 177 180-250°F., centrifuged, and dried at 160-270°F. This extracted bone is degreased prior to gelatin manufacture. The 178 degreased bone meal is de-mineralized with 4-6% HCl for a period of 5 to 7 days. Shorter times can be achieved by 179 continuous processes (Garono, et al., 1956). The de-mineralized bone is now called ossein. The ossein is washed with 180 multiple rinses of water to remove impurities. The next step is called the liming process where ossein is treated with a 1 to 181 4% lime (calcium hydroxide) slurry to adjust the pH to 12 to 12.7 for periods from 35 to 70 days, with agitation and 182 weekly lime changes to remove all non-collagen components. The ossein is then washed at the rate of 50 to 100 lb. of 183 water per pound of gelatin. During the wash process, a mineral acid is added (HCl or H₂SO₄) to neutralize excess lime and 184 to adjust the pH to 3. The final pH after all wash operations is between 5 and 7. Gelatin is then extracted from the ossein by de-mineralized hot water extraction. To further remove impurities, the liquid gelatin solution may be filtered through a 185 186 cellulose/diatomaceous earth plate and frame filter and de-ionized using an anionic-cationic resin bed. The gelatin solution 187 is evaporated to a concentration between 15 and 45%. The concentrated gelatin is filtered, pH adjusted to between 5 and 188 7, and sterilized between 280-290°F. for 8 to 12 seconds, cooled, and hot air dried for periods of 1 to 3 hours. It is then 189 milled to 80 to 30 mesh size and packaged (US FDA, 1997a). The alkaline process may take up to 20 weeks (Poppe, 1997). 190

191 Enzymatic Process

192 Collagen resists proteinase attack, but a number of collagenase enzymes have been isolated (Cole, 2000). Several processes

- 193 have been developed to produce gelatin by the use of naturally occurring enzymes (e.g., Vernon, Glass, and Weaver, 1939).
- 194 Proteolytic enzymes such as pepsin and pronase are often used in conjunction with chemical treatment methods to
- 195 increase the efficiency and reduce processing time for Type A gelatin (Hinterwaldner, 1977b). An early approach to
- 196 process collagen into gelatin without mineral acids or bases involved the sterilization of pigskins with hydrogen peroxide,
- 197 followed by the introduction of a yeast culture, such as baker's yeast or brewer's yeast, along with a sugar as an energy
- 198 source for the yeast (Keil, 1956). The yeast produced enzymes that digested the collagen, and converted that substrate to
- 199 gelatin after being denatured. Since then, a more refined approach has been patented that introduces proteolytic enzymes
- 200 produced by non-pathogenic bacteria, rather than the fermentation organisms (Petersen and Yates, 1977). Both sodium
- 201 hydroxide and a bactericide were also used in the example, but was not claimed as essential to the process. Enzymatic
- 202 methods to produce gelatin continue to evolve and have succeeded in demineralizing collagen from ossein with improved 203 predictability of quality and vield (Rowlands and Burrows, 1998). Earlier TAP reviews on enzymes have noted the
- 204 development of enzymes from genetically modified organisms.
- 205 206
- **Capsules** 207 'Gelatin' capsules are made from gelatin and various other ingredients. These are manufactured by a number of different
- 208 methods (see various patents, and Jones, 1987). The earliest reference to gelatin capsules makes no specific mention of any
- 209 ingredients other than the medicines encapsulated (Cauhaupe, 1874). However, current gelatin capsule formulations
- 210 contain a wide variety of other ingredients. Each ingredient needs to be addressed on its own merits. One of the earliest
- 211 improvements was the addition of sodium carbonate to correct for stomach acidity (Heineman, 1891). At about the same
- 212 time, it was discovered that formaldehyde (formic aldehyde) and other aldehydes can be used to harden gelatin capsules
- 213 and enable them to pass from the stomach to the intestine (Weyland, 1899). A number of other ingredients have been

introduced to harden both soft- and hard-capsules since that invention, but the most extensively studied has been 214

215 formaldehyde (Jones, 1987). Improved methods to detect formaldehyde cross-linking are of interest because trace levels of

216 formaldehyde may have an adverse effect on the capsule contents (Gold, et al., 2001a, and Gold, et al., 2001b). 217

Specific Uses: 218

Gelatin has a considerable number of applications and uses (Hudson, 1994; Keenan, 1994; Cole, 2000; Poppe, 1997; 219

Ledward, 2000). The petitioned use is in foods as a beverage clarifier (Gass, 2001). Gelatin is also used as a fining agent for 220

- 221 white wine (Vine, 1999), as a beer clarifier (Brewers Resource, 2001), and to clarify fruit and vegetable juice, especially for 222 clarified apple juice (Tressler and Joslyn, 1954; Peterson and Johnson, 1978) and pear juice (Lee and Lee, 1999). Gelatin is
- used in desserts at 8 to 10% of the dry weight (e.g., Jell-OTM), in yogurt at 0.3 to 0.5% as a thickener, in ham coatings at 2 223
- to 3%, and in confectionery and capsules (vitamin supplements) at 1.5 to 2.5 % (Igoe, 1983). Further uses include fruit 224
- toppings for pastry, instant gravy, instant sauces and soups, edible films for confectionery products (McCormick, 1987), as 225 a stabilizer in ice cream, cream cheese, and cottage cheese as well as in food foams and fruit salads (McWilliams, 2001).
- 226 227 Overall functional uses include as a stabilizer, thickener, and texturizer.
- 228

229 Gelatin and animal glue are closely related (Torr, 1954; Keenan, 1994). Gelatin-based glues are also used as adhesives to 230 put those little 'organic' stickers on fruits and vegetables. Gelatin is also used in prepared meat products such as canned 231 ham, luncheon meats, turkey, and chicken rolls where it helps to maintain consistency and moisture (Rose, 1990). Textile 232 applications include use as a sizing, coating, dressing, or finishing agent for cotton, leather, silk, and wool (Naghski, 1982).

233

237

234 Gelatin capsules (gel-caps) are commonly used to encapsulate various foods, nutritional supplements, and medicines (Ash 235 and Ash, 1995). Various forms of gelatin are common excipients in pharmaceutical formulations, including vaccines, and 236 are used as a binder for tablets (Zanowiak, 1996).

238 Action:

239 For juice applications, gelatin in combination with bentonite causes a dense precipitate or coagulum with soluble proteins 240 in the juice, which facilitates the clarification process by allowing the protein haze to be filtered out from the juice. The

- 241 petition states, "added directly to beverage in conjunction with other clarifiers to cause(s) binding of haze causing
- components which can then be filtered out along with the gelatin" (Gass, 2001). 242
- 243

244 Gelatin in aqueous food systems readily forms a hydrogen bond with water because of many exposed polar regions. As 245 gelatin binds with water, it swells and absorbs water. It can then be dispersed in hot water and with other ingredients. The 246 formation of a gelatin gel is endothermic and occurs gradually as the energy of the system dissipates. A surface film forms

- as some of the gelatin molecules cross link in a compact configuration. When the interior begins to gel, the molecules of 247
- 248 gelatin are in random configuration. As gelation continues, a more organized arrangement evolves after storage. The
- 249 gelatin gel is a dynamic colloidal dispersion and is subject to change (thixotrophy) and decreased tenderness during

250 storage. As the concentration of gelatin increases, the rate of gelation also increases, thereby increasing the firmness and

251 decreasing tenderness. If the concentration is too high, the texture becomes too firm and rubbery. An acceptable gel for

- 252 most food systems can be formed with gelatin concentrations of between 1.5 and 4% (McWilliams, 2001).
- 253

254 When gelatin is used as a clarification agent for white wine, it is able to bind negatively charged tannins by gelatin's net 255 positive charge in acidic solution. The two bind electrostatically and form an insoluble complex that can be filtered or 256 gravity settled from the wine.

257 258 Combinations:

259 The literature is filled with references to combinations for gelatin. These are not necessarily used as ingredients in food,

- 260 and may involve use for photography, textiles, or other non-food applications. All forms of gelatin may be subjected to
- further chemical treatment to change the functional, textural, or keeping qualities. The review below will focus on food 261 uses, but will also make references to pharmaceutical applications given the need to consider the use of gelatin as an 262
- 263 excipient / carrier for animal drugs, and the packaging of organic nutraceuticals and functional foods. Some non-food
- applications pose contamination concerns and are noted as control points for safe food-grade gelatin manufacture (Cole, 264
- 2000). 265
- 266

267 Preservatives

268 Dry gelatin, kept dry, can keep for years (Hinterwaldner, 1977b). However, under certain conditions, bacteria readily

- 269 consume gelatin because it is pure protein. Hydrogen peroxide is also used (Cole, 2000; Ledward, 2000).
- 270 Pentachlorophenol may be used for non-edible industrial-grade gelatin, but is prohibited for food-grade gelatin (Food
- 271 Chemicals Codex, 1996). Isinglass may be packaged with tartaric acid to balance the pH and produce a positive charge:

272 metabisulfite may be also used as a stabilizer (Quest, 2001). Gelatin may also be irradiated (9 CFR 424.21; see 21 CFR 179 273

for general provisions).

274

- 275 <u>Fining Agents</u>
- The petition states, "...added directly to beverage in conjunction with other clarifiers" (Gass, 2001). Gelatin is combined with bentonite for juice clarification (Peterson and Johnson, 1978). Tannin is often added to apple juice and other juices
- with bentomite for juice chamication (Peterson and Johnson, 1978). Tannin is often added to apple juice and other juices with low tannin content (Tressler and Joslyn, 1954). Sugar as sucrose is frequently added to increase the set time of the gel.
- 270 with low taining content (11essier and Josiyn, 1994). Sugar as sucrose is frequently added to increase the set time of 279
- 280 <u>Comestible Gelatin</u>

Gelatin may also be irradiated. Agar is used with gelatin to create a phase-separated system that maintains the texture of meat and fish despite changes in room temperature (Stainsby, 1987). Sugar-gelatin mixtures can be directly added to hot aqueous liquids without preliminary hydration in cold water.

284 285 <u>Caps</u>ules

Various plasticizing and hardening agents are added to the gelatin used to make capsules or microcapsules. Glycerol (glycerin) is a plasticizer most widely used to make soft gel capsules. Other plasticizers used with or instead of glycerol

include various alcohols, propylene glycol, sucrose, and acacia (Ledward, 2000). Sorbitol is the most widely used alcohol,

but other alcohols have been explored, including various polyethylene glycols (PEGs) (Hutchinson, et al., 1998), mannitol,

ethylene glycol (Sano et al., 2001), and tetrafurfuryl alcohol (Brox and Gabler, 1990). Various starches can be used as
 disintegrants and to improve adhesion of a secondary coating (Hutchinson, et al., 1998). Hard capsules use aldehydes to

- cross-link and stiffen the structure of gelatin. Formaldehyde and glutaraldehyde are used as hardening agents for
- microencapsulation of flavors (Cole, 2000). Hard capsules rarely use a plasticizer (Ledward, 2000). The introduction of
- formaldehyde to the gelatin may involve an emulsification of lanolin and mineral (petroleum) oil (Palermo and McMillion,
- 1951). Capsules can also be coated with various substances to give a smooth finish, to increase dispersion and dissolution,
- for flavoring, and for identification. Various surfactants, such as various polysorbates, can be used to increase dispersion.
- 297 Natural and artificial flavors and sweeteners can also be incorporated into the shells or coatings of gelatin capsules.
- Sucrose (sugar) has been the most widely used, but coatings may include acesulfame K, aspartame, and saccharin
- 299 (Hutchinson, et al., 1998).300

301 Status

302 Historic Use: The practice of consuming collagen films as edible gut parts of slaughtered animals, filled with their original 303 contents or comminuted meat, dates to the ancient Babylonians and Homer's Odyssey in 800 B.C. (Hood, 1987). Gelatin, 304 derived from collagen, was among the first commercial raw materials suitable as a contact preservative for meat and meat 305 products. Several U.S. patents covering topical applications of gelatin were granted in the mid nineteenth and early 306 twentieth centuries (e.g. Henley, 1872). Gelatin was also reported to be used in the earliest individual sausage casings in 307 1864 as a coating applied by dip treatment of textile or cotton bags or tubes (Hood, 1987). The technology for gelatin 308 production intensified during the period of 1940 through the 1950's when commercial processes were developed and 309 refined (Pearson and Bailey, 1985).

310

Gelatin was widely used in Europe to clarify juice, but because of difficulties in controlling use and the large amounts of sediments formed, use in the U.S. was limited (Tressler and Joslyn, 1954). Gelatin remains unpopular in fruit juice clarification because it creates a haze (Shaw, 1994).

313 314

Fish gelatin has been used to clarify coffee for over a century (Tucker, 1871). The literature contains few references to methods to clarify tea, including the use of gelatin. The use of gelatin to stabilize green tea extract and product was patented (Ekanayake, Kirksey, and Pultinas, 1995). Gelatin capsules have been used to encapsulate nutritional supplements

- as well as medications since at least the second half of the 19th century (Cauhape, 1874).
- 320 **OFPA, USDA Final Rule**: Not mentioned in the final rule.
- 321
 <u>Regulatory</u>: Meets USP and European Pharmacopoeia standards. FDA approved as GRAS.

323324 EPA/NIEHS/Other Sources

- 325 EPA Inert ingredients List 4A.
- 326

While gelatin and the collagen from which it is derived are both not considered hazardous, a number of the chemical agents used to treat the collagen to form gelatin are considered hazardous (US EPA, 1998b). Hydrochloric acid, sulfuric

- acid, and sodium hydroxide are all reportable under the Emergency Planning and Community Right-to-know Act
 (EPCRA) (EPA, 1998a).
- 331
- 332 NIEHS (National Toxicology Program Database) no monograph on gelatin appeared on the day of the search (NTP,
- 2001). There were several cross-references about compounds combined with gelatin.

- Hazardous components-noneFire and explosion data- not applicable
- 336 Reactivity Data- stable
- 337 Conditions to avoid- none
- 338 Hazardous decomposition products- none
- 339340 Other Sources None found.
- 341

342 Status Among U.S. Certifiers

California Certified Organic Farmers, Oregon Tilth Certified Organic, and Washington State Department of Agriculture (WSDA) Organic
 Food Program — Not mentioned.

- Organic Crop Improvement Association International (OCIA) International Certification Standards, effective date July 1, 2001,
 9.4.3 Processing Materials List: allowed as a processing production aid for fruits and vegetables and in winemaking.
- 348

345

Texas Department of Agriculture (TDA) Organic Certification Program — Organic Certification Program Materials List 2000; lists
 as gelatin waxes—may be used as an aid in processing organic fiber if removed by final scouring.

351352 International

EU 2092/91 — Annex VI — Gelatin is listed under "Processing aids and other products which may be used for
 processing of ingredients of agricultural origin" in Section B and under "Ingredients of Agricultural Origin Which Have
 Not Been Produced Organically" in Section C.

- *Codex Alimentarius* Guideline for the Production, Processing, Labelling, and Marketing of Organically Produced Foods
- 358 CAC/GL 32-1999, Table 2 Substance for Plant Pest and Disease Control, 1. Plant and Animal: listed.
- Table 4: Listed under "processing aids which may be used for the preparation of products of agricultural origin." 360
- *IFOAM* Basic Standards for Organic Production and Processing, September 2000, Appendix 4 List of Approved
 Ingredients of Non Agricultural Origin and Processing Aids Used in Food Processing, Processing Aids and Other
 Products: listed for use in fruit & vegetable products and wine.
- *Ministry of Agricultural, Forestry and Fisheries of Japan (MAFF)* Japan Agricultural Standard, Notification #60, Table 2 of food additives: allowed, with no annotation.
- *Canada* Canadian General Standards Board National Standard for Organic Agriculture (CAN/CGSB-32.310-99), June
 1999: permitted as a clarifying agent.
- 370

364

367

371 *Certified Organic Associations of British Columbia (COABC)* — British Columbia Certified Organic Production Operation

- 372 Policies and Farm Management Standards, Section 9.14 Processing and Handling Materials List, March 2001: non-
- hydrolysed or hydrolysed, regulated as a processing production aid; Either form of gelatin maybe used as a product
- processing aid, for now, but the producer must submit to the certifying agency written details of their search to replace the
- hydrolysed gelatin format with a non-hydrolysed gelatin or a completely different product. Allowed for fruits and
- vegetables and in winemaking.
- *Naturland, Germany* Listed in the August 1999 General Processing Standards in the "List of Permitted Ingredients,
 Additives, and Auxiliary Products" as "food gelatin without additives (exclusively for cream-like masses)."

381 Miscellaneous

- 382 Organic Grapes into Wine Alliance (OGWA) Lists 'Fish based fining agents' and 'Non-hydrolized bone gelatin' as
 383 'Tolerated clarifying materials.' 'Hydrolized gelatin' is prohibited.
- 384

391

385 Section 2119 OFPA U.S.C. 6518(m)(1-7) Criteria

- The potential of the substance for detrimental chemical interactions with other materials used in organic farming systems.
 Fish, bovine, and porcine gelatin are used directly in value-added food products and juice and wine processing and therefore would not interact directly with other materials used in organic farming systems. The petition notes that the spent gelatin and bentonite are spread as fertilizer (Gass, 2001). There is no indication of detrimental interactions from this application.
- The toxicity and mode of action of the substance and of its breakdown products or any contaminants, and their persistence and areas of
 concentration in the environment.

There is no information available on the toxicity or mode of action of gelatin. Since gelatin is a protein, it can be readily broken down by proteolytic enzymes in foods such as papain, bromealin, and ficin, or in the stomach by pepsin or chymotrypsin to shorter chain peptides and amino acids. Chromium and pentachlorophenol from gelatin recovered from hides could be possible contaminants.

- 399 3. The probability of environmental contamination during manufacture, use, misuse, or disposal of the substance.
 400 This is covered under processing criteria 2 below.
- 402 4. The effects of the substance on human health.

Fish gelatin may be contaminated with *Clostridium botulinum* and the consumption of fish gelatin has resulted in
 documented fatal cases of botulism (Miller, 1975). These incidents do not appear to be related to gelatin prepared by
 Good Manufacturing Practices.

407 Another human-health concern is allergenicity to gelatin. Beef, pork, and fish gelatin all have been reported to cause 408 allergenic reactions (Sakaguchi, Hori, Ebihara, et al., 1999). Fish proteins can cause allergic reactions at very low levels 409 (Aas, 1966). Although no allergic reactions to fish gelatin in processed, packaged foods have been documented, some 410 caution is noted in labeling foods that contain gelatin (Taylor and Hefle, 2001). Fish-sensitive patients exposed to fish gelatin had allergic reactions. Gelatin labeling may be required for certain products even if the product contains only 411 412 incidental amounts of an allergen (Taylor & Hefle, 2001). Fish vary by species in their allergen composition and the 413 reactivity of sensitive patients (de Martino, et al., 1990). The use of gelatin as an excipient in various vaccines and 414 medications may result in immediate severe allergic reactions—including anaphylactic shock—when the vaccinations 415 are administered to patients who have recently eaten food containing gelatin (Sakaguchi, et al., 1996; Wahl and 416 Kleinhans, 1989; Kelso, et al., 1993). Reactions were noted with both bovine gelatin (Sakaguchi, Hori, Ebihara, et al., 417 1999; Sakaguchi, Hori, Hattori, et al., 1999) and fish gelatin (Sakaguchi, Toda, et al., 2000). The commercialization of 418 soft, chewy (gummi) candies increased gelatin consumption world-wide beginning around 1992 (Keenan, 1994). The 419 increase in reactions to gelatin as an excipient in vaccines administered in Japan may be related to but not entirely 420 explained by an increase in the consumption by children of candy that contains gelatin (Nakayama, Aizawa, and 421 Kuno-Sakai, 1999). Adult patients have had similar reactions (Sakaguchi, Kaneda, and Inouye, 1999).

421 422

443

446

449

398

401

406

423 Finally, the most recent human health concern to arise from gelatin use has been the possible transmission of 424 spongiform encephalophathy (Mad Cow Disease) from infected animals through the production and manufacturing 425 operations (US FDA, 1997a). The FDA has not concluded that there is a potential risk to humans from BSE 426 transmitted from infected bovine animals through gelatin, but has prohibited using sources of animal by-products for 427 gelatin manufacture if those sources were obtained form BSE positive countries. Conclusions drawn from this study 428 indicate that no sources of bovine or porcine animal by-products from countries where there have been outbreaks 429 have been used for gelatin manufacturing. Since in the U.S. 98% of all bovine gelatin is obtained from USDA Food 430 Safety Inspection Service (FSIS) inspected plants and 2% from Argentina, risk is very minimal on the transmission of 431 this disease via gelatin manufacture. The FDA now requires a certificate of origin for gelatin coming in from non-432 BSE affected countries and the certificate of origin must be endorsed by the veterinary service of the country where 433 the gelatin is manufactured, relating to the species and processing of the gelatin. Additionally, there have been a few 434 studies conducted to determine if the infectious agent (prion) can retain its biological activity after undergoing process 435 manufacturing conditions since there is no diagnostic method available other then direct inoculation. To date, all 436 reported cases of BSE have been bovine in origin, with no reported cases derived form porcine or fish. BSE concerns 437 have led manufacturers to replace bovine gelatin with other hydrocolloids (Ledward, 2000). 438

- 5. The effects of the substance on biological and chemical interactions in the agroecosystem, including the physiological effects of the substance on soil organisms (including the salt index and solubility of the soil), crops and livestock.
 Gelatin is a food ingredient and is not applied to the soil or otherwise released into the agroecosystem, except as an inert ingredient and carrier in various formulations.
- *6. The alternatives to using the substance in terms of practices or other available materials.*See processing criteria 7 below.
- 447 7. Its compatibility with a system of sustainable agriculture.
 448 See processing criteria 6 below.

450 Criteria From the February 10, 1999 NOSB Meeting

- 451 A PROCESSING AID OR ADJUVANT may be used if:
- 452 1. It cannot be produced from a natural source and has no organic ingredients as substitutes.

453 Gelatin is not found in nature, but is derived from collagen, a naturally occurring protein (Budavari, 1996). One 454 possible exception may be undenatured isinglass (Ockerman, 1991) or isinglass that has been denatured by thermal 455 treatment (heating) (Hickman, et al., 2000). It is not clear if organic collagen is commercially available, but it would 456 ordinarily be considered an agricultural commodity. Since gelatin is a purified, extracted protein if derived from 457 certified organic animals, its organic integrity would need to be evaluated as a function of process operations. Kosher 458 fish skins, prepared with natural acids, and isinglass may be considered natural sources. However, collagen—a natural 459 protein—is converted to a biologically different protein, gelatin, by cooking. The other ingredients used in 460 preparation may be nonsynthetic or synthetic. 461 462 2. Its manufacture, use, and disposal do not have adverse effects on the environment and are done in a manner compatible with organic handling as described in section 6513 of the OFPA. 463 464 As a slaughter product, gelatin creates a number of environmental impacts related to meat production. The major 465 consideration during the manufacture of all forms of gelatin is the large amount of process waste effluents generated 466 during manufacturing, which would contain mineral components and lipid material (Hinterwaldner, 1977). This 467 creates a high biological oxygen demand (BOD). Waste effluents would be alkaline or acidic. Gelatin recovered from 468 leather tanning operations may generate chromium contaminated waste. Irradiation with gamma rays may involve the 469 use of radioactive material. 470 471 Gelatin capsules may involve the use of polyacrylamide, various aldehydes such as formaldehyde or glutaraldehyde, 472 and other synthetic compounds to harden and cross-link the structures to make the capsules rigid. 473 474 З. If the nutritional quality of the food is maintained and the material itself or its breakdown products do not have adverse effects on human 475 health as defined by applicable Federal regulations. 476 Gelatin is notable for its low nutritional value and poor protein quality, and is often used as a textbook example for 477 that purpose. It is one of the few foods that has a negative protein efficiency ratio (PER). That is, the test animals 478 (rats) lost weight per gram of protein in the form of eaten gelatin (Johnson and Peterson, 1974). This anomaly is 479 attributed to the fact that gelatin contains no tryptophan, and is deficient in isoleucine, threonine, and methionine 480 (Potter and Hotchkiss, 1998). During the 1970s, the low protein quality of collagen-based 'Liquid Protein' diet 481 products led to Federal regulatory action (Vanderveen and Mitchell, 1981). The Food and Drug Administration 482 investigated the deaths of 17 relatively young people, 13 with diets whose sole caloric intake came from a liquid 483 collagen or gelatin solution. The FDA subsequently developed regulations that modified the label requirements of 484 such diet products (US FDA, 1990). 485 486 Despite its low nutritional value, gelatin is not considered hazardous by applicable government regulations. It is 487 considered a food rather than a food additive. This covers all three forms of gelatin--fish, bovine and porcine. Also see OFPA criteria 4, above. 488 489 490 Its primary purpose is not as a preservative or used only to recreate/improve flavors, colors, textures, or nutritive value lost during 491 processing except in the latter case as required by law. 492 The primary use of fish gelatin as described in the petition is for use as a processing aid to be used in combination 493 with bentonite to clarify the haze found in tea (Gass, 2001). Gelatin also has a significant number of additional food 494 uses based on its protein functionality in gelation, water binding, emulsification, adhesion, film formation, 495 cyrstallization control, thickening and stabilization, whipping and foam generation, other beverage fining, and glaze 496 formation (Hudson, 1994). Gelatin appeared to be 'among the first commercial raw materials suitable as a contact 497 preservative for meat and meat products' (Henley, 1872; Hood, 1987). Certain applications of gelatin are textural in 498 nature, such as use as an ingredient in confectionary and jelly desserts (Poppe, 1997), in yogurts and other dairy 499 products (Ledward, 2000), and as a thickener in soup (Cole, 2000). Gelatin is particularly prized over possible 500 substitutes for its texture and mouth-feel (Stainsby, 1987).

501

502 5. Is Generally Recognized As Safe (GRAS) by FDA when used in accordance with Good Manufacturing Practices (GMP), and contains
 503 no residues of heavy metals or other contaminants in excess of FDA tolerances.

- The FDA recognizes gelatin as "Generally Recognized as Safe" (GRAS). Because gelatin is considered a food, rather
 than a food additive, it is GRAS by prior approval. Gelatin is listed as GRAS under 21 CFR 182.70, 'substances
 migrating from cotton and cotton fabrics used in dry food packaging.'
- 508 The FDA references to gelatin include:

FDA References to Gelatin		
<u>21 CFR</u>	Title	
133.178	Pasteurized Neufchâtel cheese spread with other foods.	
133.179	Pasteurized process cheese spread.	
172.230	Microcapsules for flavoring substances.	
172.255	Polyacrylamide.	
172.280	Terpene resin.	
182.70	Substances migrating from cotton and cotton fabrics used in dry food packaging.	
Source: EAFUS, 21 CFR.		

509

513

510 Sulfur dioxide used as a biocide is often a contaminant (Cole, 2000). Chromium and pentachlorophenol are regarded 511 as potential contaminants of food-grade gelatin (Food Chemicals Codex, 1996) due to the use of leather as a source of 512 collagen (Rose, 1990).

- 514 Food Chemicals Codex requirements for gelatin are:
- 515 Identification:
- A. Gelatin forms a reversible gel when tested as follows: Dissolve 10 g in 100 ml of hot water in a suitable flask, and cool at 2°C. for 24 h. A gel forms. Transfer the flask to a water bath heated to 60°C. Within 30 minutes, upon stirring, the gel reverts to the original liquid state.
- B. To a 1 in 100 solution of the sample, add trinitrophenol TS or a 1 in 1.5 solution of potassium dichromate
- 520 previously mixed with about one-fourth its volume of 3 N hydrochloric acid. A yellow precipitate forms.
- 521 Ash: Not more than 3.0%
- 522 Chromium: Not more than 10 mg/kg
- 523 Fluoride: Not more than 0.005%
- 524 Heavy metals (as Pb): Not more than 0.002%
- 525 Lead (as Pb): Not more than 1.5 mg/kg
- 526 Loss on drying: Not more than 15.0%
- 527 Microbial limits: 528 E coli: Negati
 - E coli: Negative in 25 g.
 - Salmonella: Negative in 25 g.
- 530 Pentachlorophenol limit: Not more than 0.3 mg/kg
- 531 Protein: the specification conforms to the representations of the vendor.
- 532 Sulfur dioxide: Not more than 0.005%.

Gelatin also has the potential to transmit pathogens. Fish gelatin from Alaska has plate-tested positive for *Clostridium botulinum* type E, a source of botulism (Miller, 1975). The Animal and Plant Health Inspection Service (APHIS)
 mandated a certificate of origin on all imported gelatin from non-BSE countries (9 CFR 94.18).

'Gelatin' capsules are GRAS conditional upon their other ingredients. Each of these would also need to be GRAS. Microcapsules used for flavoring may contain any substance that FDA recognizes as GRAS 'for the purpose' [21CFR 172.230(a)(1)]. The FDA also allows the following for microcapsules:

540 541

529

533

537 538

539

Substances Considered GRAS for use in Gelatin Capsules		
21 CFR	Substance	Limitation
172.230(a)(2)	succinylated gelatin	Succinic acid content of the gelatin is 4.5 to 5.5 percent.
172.230(a)(2)	arabinogalactan	Complying with Sec. 172.610; as adjuvant.
172.230(a)(2)	silicon dioxide	Complying with Sec. 172.480; as adjuvant.
172.230(a)(3)	glutaraldehyde	As cross-linking agent for insolubilizing a coacervate of gum arabic and gelatin.
172.230(a)(3)	n-Octyl alcohol	As a defoamer.
172.230(a)(4)	petroleum wax	Complying with Sec. 172.886. Not to exceed 50 percent by combined weight of
		the microcapsule and spice-flavoring substance.
172.255	polyacrylamide	Not more than 0.2 percent of acrylamide monomer may be safely used as a film
		former in the imprinting of soft-shell gelatin capsules when the amount used is
		not in excess of the minimum required to produce the intended effect.
172.280	terpene resin	As a moisture barrier for gelatin capsules, at a level not to exceed 0.07% of the weight of the capsule.

542 543 544

Source: EAFUS, 21CFR.

6. Its use is compatible with the principles of organic handling.

545 The petition is requesting approval for its use as a processing aid to form a gelatin-bentonite complex to bind with 546 soluble protein extracted in the tea. The gelatin does not remain in the tea but precipitates out in the form of a 547 complex and is not carried over in the final organic product. This is also true for application of gelatin in beer, juice, 548 and white wine clarification. However, for many other uses in food systems gelatin would be present as a specific 549 functional ingredient in that product formulation and would have to be listed on the label of the product. Increasing 550 numbers of consumers of organic wine request wine fined without animal products, but in general production of wine 551 to vegetarian standards is not considered a requirement (Elliot, 2000). 552 553 7. There is no other way to produce a similar product without its use and it is used in the minimum quantity required to achieve the process. 554 Gelatin has some unique functional properties that are similar, but not identical in a number of other gels. The long 555 molecular strands and partially stacked triple helixes found in gelatin offer a strength and flexibility not found in, say, 556 alginate, cornstarch, or carrageenan (Walstra, 1996). These vegetable-based substitutes lack the 'melt-in-the-mouth' and elastic properties of gelatin (Cole, 2000). 557 558 559 The petition states, "We have found a gelatin bentonite combination to work best in removing the haze causing 560 proteins found in tea, while hot processing. In addition, gelatin fining can be used in conjunction with diatomaceous 561 earth filtration which is less expensive and more versatile than membrane or ultra-filtration for the range of teas and 562 botanicals that Tazo filters. Other clarifying agents that can be used are silica gel, and tannic acid. Tannic acid requires 563 cold processing, and finding an exact-dosage is difficult. Silica fining agents require settling, and would also work best 564 in conjunction with gelatin" (Gass, 2001). 565 Fruit juice clarification and fining wine can be carried out with enzymes, diatomaceous earth (Shaw, 1994), rice hulls, 566 567 egg whites, bentonite clay, pectin, and cellulose. Pectolytic enzymes are probably the most common and reliable 568 method for apple juice clarification (USDA, 1982). Apple juice can also be physically clarified by flash heat, 569 electrokinetic adsorption, and filtration (USDA, 1982). The use of gelatin has an advantage over pectin in that it does 570 not foul the membranes used to filter juice. Tannin shares this advantage (Riedl, Girard, and Lencki, 1998). 571 572 Wine that has been fined is qualitatively different from unfined wine. Various fining agents also produce different 573 results in fining. One study indicated that the use of gelatin enabled a more accurate determination of sulfite levels in 574 white wine by the removal of interfering polyphenols (Matsumoto, et al., 1989). The minimum active gelatin dosage 575 needed to fine wine depends on both the wine's and the gelatin's parameters. Home winemakers use between 0.25 576 and 2 grams of gelatin per gallon of red wine and between 0.0825 and 0.25 grams per gallon of white wine. The 577 amount of isinglass typically ranges between 0.05 to 0.3 grams per gallon, with white wine typically receiving about 578 one gram per gallon (Eisenmann, 1999). Polyphenol content, turbidity, color intensity, and brown polymers content 579 in the wine creates a greater demand for fining agents. Ellagic acid may be a special concern with muscadine wine (Lin 580 and Vine, 1990). The gelatin's capacity to aggregate and remove the undesired properties depends on the degree of hydrolysis expressed as the distribution of molecular weights and the net charge density of the gelatin (Versari, et al., 581 582 1998). Most of the same substitutes can be used in clarifying juice can also be used to fine wine: bentonite clay, 583 colloidal silica, diatomaceous earth, casein, and egg whites (Eisenmann, 1999). While these do not create identical 584 finishes to gelatin and isinglass, they are able to remove the tannins, lees, and other particles and impurities that are 585 removed by gelatin and isinglass. 586 587 One study compared undenatured isinglass (crude swim bladders), thermally denatured and purified isinglass, and 588 bovine collagen treated with acetic acid and the enzyme pepsin. The undenatured isinglass was found to be more 589 effective at aggregating yeast and other insoluble particles found in beer than the denatured fish gelatin. Bovine hide 590 collagen was found the most effective treatment (Hickman et al., 2000). 591 592 Gelatin fining can be used with diatomaceous earth filtration. Additionally, fish gelatin may be more cost effective 593 especially in comparison to process ultra filtration, which would be capital intensive (Gass, 2001). Because excessive 594 amounts can lead to discoloration and—particularly in the case of fish gelatin—off-flavors, gelatin is used sparingly 595 (Tressler and Joslyn, 1954). These drawbacks have led to gelatin's replacement in many processes. 596 597 For beer, irish moss, bentonite, papain, egg whites, isinglass, silica gel, and other materials are possible clarifiers and 598 fining agents (Brewers Resource, 2001). Fungally-derived gellan gum is also described in an abstract to be a potential 599 replacement for isinglass (Dartey, 1993). 600 601 Fish gelatin can serve as a substitute for various dairy products as oil-in-water emulsifiers, with certain limitations 602 (Dickinson and Lopez, 2001). Of the emulsifiers included in the study, sodium caseinate performed the best. This 603 implies that sodium caseinate, casein hydrolyzate, and whey protein isolate may be used as substitutes for fish gelatin. 604 Consumer demand for vegetable-based substitutes has created incentives to develop alternatives to gelatin that are

605 similarly low in fat. Researchers have explored various hydrocolloids and fluid gels, including carrageenans, agars, 606 agarose, alginates, pectins, and gellans (Norton, Foster, and Brown, 1998). While pectin and sodium alginate combined may have comparable rheological qualities to gelatin, the pectin used in one experiment was been 607 608 chemically treated by amidation with an unspecified agent (Madsen, 2000). 609 610 Cellulose can substitute for gelatin in the making of vegetarian / vegan capsules. See the cellulose TAP review. 611 TAP Reviewer Discussion² 612 613 Reviewer 1 /Ph.D, Biochemistry with food industry experience. Eastern U.S./ 614 615 616 Identification ... Strictly speaking, isinglass is not "gelatin," although it has similar properties and similar applications. The 'title' of this 617 material review should be "Gelatins and Isinglass.' 618 619 620 **Characterization** 621 The fish gelatin manufacturing procedure is unequivocally described here as involving only food acids (acetic, lactic or 622 citric). The excellent literature sources accompanying the TAP Review speak only to "acid" and usually mineral acid 623 (sulfuric and hydrochloric) in describing production of gelatin from young animal (including fish) skins. 624 625 For isinglass, most commentators would agree that "gelatin" is the material extracted from collagen by hot water. Since 626 isinglass (a) is used directly without extraction, (b) is not extracted with hot water and (c) loses much of its functionality when treated with hot water, it should be treated on its own merits ("gelatin substitute") and not as gelatin. 627 628 629 The presentation to FDA by the U.S. manufacturers of porcine gelatin and the review by Hinterwalter (1977a) make it 630 clear that economic and effluent disposal issues are driving Type A porcine gelatin manufacture to simpler and less environmentally impactful processes. The basics of the process – soak food grade skin in acid to swell the collagen (similar 631 to pickling cucumbers or making sauerbraten), rinse to neutralize the acid, extract the gelatin with hot water – seem to me 632 633 compatible with organic processing. 634 635 The alkali process is well-described. My reservation here is that the bone-to-ossein-to-gelatin process is lumped with the process for chromium-tanned hides. The ossein process is somewhat more drastic than the acid process, since strong acid 636 and a lower pH are needed to dissolve the bone mineral. The alkali soak using calcium hydroxide is analogous to the 637 original way of making masa (lime water soaking of corn). Other alkalis (e.g., sodium hydroxide) would be less acceptable. 638 Chromium-tanned hides are synthetic materials, unlike animal bones and animal skins, which are agricultural products. 639 640 641 The enzymatic processes do not seem to be commercially important. 642 643 Gelatin CAPSULES do not belong in this section or in this document. Gelatin capsules routinely comprise other 644 ingredients. Rarely are they 'pure' gelatin. Capsules merely represent an ingestible product (food, supplement or drug) of 645 which gelatin is an ingredient. 646 647 Cross-linked gelatins can be chemically modified (thus synthetic) or enzyme-modified (synthetic if the enzyme is produced 648 by a GMO). They should be the subject of a separate TAP Review. 649 650 <u>Status</u> It is significant that the USDA Grading Manual for Canned Apple Juice specifically mentions the "Gelatin-tannin 651 652 Method" for clarifying apple juice. The petitioned use of gelatin for tea clarification is an exemplification of the same 653 principle. 654 It also is significant that the BATF regulations for "Storage, Treatment and Finishing of Wine" [27 CFR 24.246] permit 655 the use of gelatin (food grade) to clarify juice or wine. The same regulations permit use of isinglass to clarify wine and 656 indicate that isinglass is GRAS per FDA advisory opinion dated 02/25/1985. 657 658

Gelatin

² OMRI's information is enclosed is square brackets in italics. Where a reviewer corrected a technical point (e.g., the word should be "intravenous" rather than "subcutaneous"), these corrections were made in this document and are not listed here in the Reviewer Comments. The rest of the TAP Reviewer's comments are edited for any identifying comments, redundant statements, and typographical errors. Text removed is identified by ellipses [...]. Statements expressed by reviewers are their own and do not reflect the opinions of any other individual or organizations.

659 It would be useful to know exactly which of the materials used in preparing bones, hides, or skins are reportable under the 660 EPCRA, in order to judge the significance of this mention.

661 662 **OFPA Criteria**

663 Criterion No. 1: The petition mentions that the filter cake, comprising gelatin, bentonite and diatomaceous earth in 664 addition to juice or tea tannins, proteins, etc., are applied to the land as 'fertilizer,' which takes advantage of the nitrogen in the gelatin. 665

666

667 Criterion No. 2: The chromium, which is present in tanned hides, is toxic. Use of tanned hides to manufacture gelatin for 668 use in organic food processing is incongruous at the least. Note that pentachlorophenol appears to be used only in 669 inedible gelatin manufacture.

670

671 Criterion No. 3: The petition and the TAP review do not get deeply into the issue of environmental contamination related 672 to the gelatin manufacturing process. The two industry presentations to FDA in 1997 indicate that the economic costs of 673 pollution control are forcing the industry in developed countries to take various steps to reduce the environmental impact. 674 For example, solvent extraction of fat from skins, hides, and bones is being replaced by steam and physical methods.

675

Criterion No. 4: Gelatin is GRAS [Generally Recognized As Safe]. Commercial porcine and bovine gelatins are sterilized 676 677 prior to noodle creation and drying. The allergy issue is becoming a greater concern. Since there is always some carry-over into the finished food, species labeling of processing aids makes sense. The BSE [Mad Cow Disease] is not an issue in 678 679 North America at this moment with regard to gelatin. 680

681 Criterion No. 5: The TAP Review is not complete on this criterion at this point in the TAP Review. Gelatin is used to 682 filter natural beverages and it is logical to expect that the resulting filter cake will be composted or applied directly to land 683 as a useful soil amendment (one with a substantial nitrogen content). This is a good thing.

684

685 Criterion No. 6: Although other methods for clarifying juices and other beverages exist, the use of gelatin, alone or with 686 other substances (tannin for apple juice, diatomaceous earth for tea, etc.), appears to offer advantages in certain circumstances [see petitioner statement]. 687

688

Criterion No. 7: Making gelatin from pigskins, cattle hides, and cattle bones is compatible with sustainable agriculture. 689 690 These practices go back hundreds to thousands of years, and use as starting materials animal tissues that would otherwise 691 not be used, thus lowering the cost of meat.

692 693 NOSB Criteria

694 NOSB Criterion 1: Gelatin is produced from a natural source - pigskins, fish skins, cattle hides, and cattle bones. Organic 695 gelatin could be produced from organically raised hogs and cattle, depending on the process. The acid process induces 696 little or no chemical change in the collagen and the collagen is converted to extractable gelatin by 'cooking' in hot water. 697 Cooking is allowed as a process in OFPA.

698

699 NOSB Criterion 2: The TAP Review does not provide sufficient detail on the industrial disposal problems resulting from 700 gelatin manufacture as it is performed in the U.S. in the Twenty-first Century. See OFPA Criterion No. 3 above. 701

NOSB Criterion 3: The TAP Review discussion treats gelatin as if it is only and always the sole protein in the diet. In its 702 703 normal use as a food ingredient (where it is about 2.5% of a dessert product) and in its normal use as a processing aid 704 (where it is removed totally from the beverage to achieve its intended clarifying effect), gelatin has a minimal impact on an 705 individual's protein nutrition. Edible gelatin is a FOOD; it is not a food additive.

707 NOSB Criterion 4: In beverage processing (clarification), gelatin has the effect of improving color (it removes turbidity). 708 In gelatin desserts, gelatin creates the texture. In meats, the effect of gelatin can best be described as improving texture. 709 since it binds the water of cooking. The same holds true for yogurts, soups, and other semi-liquid products.

710

706

711 NOSB Criterion 5: Gelatin is a food. Gelatin is GRAS. Isinglass also is GRAS.

712 713 NOSB Criterion 6: The TAP Review is not accurate in limiting beverage clarification uses of gelatin to tea and wine [see 714 "all other uses in food systems"]. Gelatin is also used to clarify beer, fruit juices, and, historically, coffee. Directing

715 attention to the criterion itself, using Type A fish or porcine gelatin (prepared by the acid method) or isinglass, all of which

716 are non-synthetic agricultural substances, to clarify beverages seems imminently compatible with the principles of organic handling.

717

719 NOSB Criterion 7: Other means of clarifying juices, wine, and tannin-containing beverages (tea, coffee, beer) exist but 720 each has advantages depending on the system. Economically and functionally, it is important to use the minimum quantity 721 required to achieve the intended effect, since using more can actually create turbidity in the final product. 722 723 *Recommendation:* List as nonsynthetic, and allowed. Annotation: From animal bones and animal skins prepared with 724 agricultural products and items on the National List (7 CFR 205.605) and not chemically modified. 725 726 Reviewer 2 727 [PhD. Food science, organic and natural foods industry consultant, Western U.S.] 728 729 My determination is that gelatin is a non-agricultural substance and should be considered non-synthetic for both 95% 730 organic and Made with Organic. It should be allowed as a texturizer, coating and binder (no hard capsule applications); no 731 sulfur dioxide or hydrogen peroxide allowed in the process. 732 733 For the most part (see comments regarding questions below), I agree with the information contained in the TAP review 734 and I feel that it is generally complete. 735 Fish gelatin, in particular, seems to use only natural processes for extraction. The pre-treatments in acid or base for 736 737 beef or pork gelatin are harsh, but are primarily used to make the extraction more efficient and do not chemically 738 participate in the reaction. Gelatin capsules should be considered synthetic, unless available without chemical hardening 739 agents and not allowed. Soft gel capsules, which only use glycerol as a plasticizer, may be okay. 740 741 Gelatin used as a texturizer or coating agent is compatible with organic production. The issue of animal versus vegetable 742 products is one that is consistent with its application as a fining agent. Since animal products are certified organic, there 743 should be no reason why gelatin would not be compatible with organic processing. 744 745 There are many other fining agents that can be used, some of which are mentioned in the petition. 746 747 Vegetarian/vegan gel caps are made of hydroxypropylmethylcellulose, which although cellulose-derived, would be 748 considered synthetic. Chemically modified celluloses were not considered in the cellulose TAP review. ¹ You can get more 749 information at <u>www.vegicaps.com</u>, made by RP Scherer or at <u>www.capsugel.com</u>, who make a competitive product called 750 Vcaps. 751 752 Gelatin may be used as a texturizer and coating agent. It may also be used in capsules, although I believe the process 753 renders the product synthetic and incompatible with organic. 754 755 It would be preferred that they not come from genetically engineered organisms. These products should be run through 756 OMRI's decision tree on genetic modification as a first step for the determination of whether they should be considered 757 excluded to be consistent with other processes and determinations. 758 759 The issues around nutritional quality are really only applicable where gelatin is the sole source of protein as in the liquid protein diets. They could be another excluded application, I suppose. The use of gelatin at the usage levels for 760 761 texturization or coating is not sufficient to cause nutritional quality degradation. It technically could be possible to create 762 an organic [gelatin dessert] from organic animals, organic cane sugar, and organic flavor. It would only be a problem if 763 someone tried to live on organic [gelatin dessert] alone. 764 765 I am not sure what additional information is needed from an exhaustive review of fining agent articles. It seems to be an 766 acceptable process if the gelatin is processed correctly. 767 768 <u>Reviewer 3</u> 769 [Academic researcher with experience as a public health official, East Coast] 770 I agree with the TAP Review with regard to gelatin itself, but perhaps processing criteria 2 and 5 should be referenced here, since there are issues 771 of environmental contamination related to substances attendant to the manufacture, use, misuse, or disposal of gelatin. 772 773 The effects of the substance on human health. 1. 774 There appear to be a variety of human health risks related to gelatin. I have put them in four general categories for 775 purposes of this discussion. The nature and magnitude of these risks vary depending on the species of animal from which

¹ Cellulose TAP review, 9-29-01 did discuss process for microcrystalline cellulose, a more highly modified form. TAP reviewers and NOSB did not recommend this form for approval.

the collagen (the raw material for gelatin) is derived, the part of the animal that is used, the end-use of the gelatin, and the 776 777 process by which the gelatin is extracted and treated, and many other factors. For purposes of this discussion, I have 778 limited my consideration to those factors that bear most directly on the decision at hand. 779 780 **BSE**: According to the FDA in 1997, about 55% of gelatin consumed in the US was derived from pigs, and about 45% 781 from cattle. As of May 1997, gelatin was being imported from the a number of countries, primarily Argentina, Australia, 782 Belgium, Brazil, Columbia, Germany, Mexico, New Zealand, South Africa, and Sweden (anonymous, 1997). Since that 783 time only Argentina, Australia, Brazil, and New Zealand remain as countries generally considered without risk for BSE. 784 785 In December 2000, the World Health Organization (WHO) announced that 500,000 tons of meat and bone meal 786 produced by the European Union had been exported over the last 10 years to Eastern Europe, Asia, and the US 787 (International Herald Tribune, 17 March 2001). According to a recent report from The Institute of Food Science & 788 Technology (IFST), the United Kingdom's independent professional qualifying body for food scientists and technologists, 789 WHO has stated that over 100 countries are at risk for BSE and countries throughout Europe have now reported cases of 790 BSE. According to WHO, countries can be placed in four categories of risk that live cattle could be infected with the BSE 791 agent and incubating the disease. Only 14 countries are in Category I (highly unlikely to present a BSE risk). The US, along with Canada, is in Category II (unlikely but a BSE risk cannot be excluded). Category III countries are comprised mostly 792 793 by Eastern Europe and are likely to present a BSE risk or have a low level of confirmed risk. Category IV countries have a 794 confirmed risk at a high level such as the United Kingdom (UK) (IFST, 2001). 795 BSE has recently spread to Asia as well, as cases have been reported in Hong Kong and Korea (Medical Industry Today, 796 797 17 August 2001). In the fall of 2001, the first case in Japan was reported (IFST, 2001). 798 799 Governments are scrambling to tighten their borders and the level of prohibition of feed sources in an effort to bolster 800 public confidence. Currently, the European Commission (EC) has a total suspension in effect for member states on the feeding of processed animal protein to farmed animals used for the production of food. Among the few exceptions 801 802 allowed to member states are fishmeal for non-ruminant feed and gelatin of non-ruminant animals for coating additives 803 (EC,2001). Japan extended their ban on ruminant meat and bone meal in cattle feed to include an extensive list of animal 804 protein products banned from use in swine and poultry feed as well as fertilizers. The list includes fishmeal except if it is 805 made at plants where no animal protein other than fishmeal is produced, and gelatin from collagen excluding that derived 806 from skin/hide and treated in a certain manner (Japan Ministry of Agriculture, Forestry and Fisheries press release, 2 807 October 2001). 808 809 In a little heralded fact, BSE has already appeared in North America as a single cow imported from Britain died of BSE in 810 Canada (Johnson and Gibbs, 1998). In addition, between 1980 and 1989, 334 animals were brought from the UK to the 811 US. The USDA traced the disposition of these animals and determined that 161 were disposed of in a manner that poses 812 no risk to humans or other animals, but it cannot make this conclusion about the other 173 animals (USDA, 2001). 813 814 Unfortunately, no amount of government action may restore consumer confidence. The BSE Inquiry conducted by the UK government issued its final report in the fall of 2001 and identified a number of problems with the handling of the 815 BSE outbreak: excessive government secrecy and unjustified public reassurances; inadequate communication among 816 government departments; inadequate handling of hazard and uncertainty; lack of foresight and planning; ineffective 817 818 enforcement of control measures; lack of correct use of scientific advisory committees; and, inadequate coordination of 819 research (IFST, 2001). 820 821 The lack of faith in regulatory barriers is evident throughout the food industry, and not only in the UK. Major foodprocessing and grocery store chains in Europe and the US are requesting written guarantees and "traceable evidence" from 822 823 beef suppliers (including those based in the US) that no meat or bone meal is used as feed. This has had the direct effect 824 of inducing commercial feed companies in England to rely increasingly on vegetable proteins, in particular organic 825 soybean meal (Preston, 2001). US cattle producers organized a private meeting with the FDA and USDA to improve 826 compliance and the American Feed Industry Association set up an independent third-party certification program after 827 FDA released a report in early 2001 revealing the occurrence of numerous violations of labeling requirements and the lack 828 of system safeguards to keep ruminant and non-ruminant by-products separated (Center for Science in the Public Interest, 829 2001).

830

A risk analysis conducted by Harvard for the USDA theorizes that in the unlikely event that BSE should be introduced to

- this country, control measures already in place would ensure that few if any animals would get sick and that the disease
- 833 would soon die out. The authors of the study admit that this assumes the disease is spread through the feeding of infected 834 rendered animals to susceptible animals. It further acknowledges that violations of the feed ban have occurred and that

many unknowns, including the exact origin of the disease, remain unresolved. It cannot say that the disease will never
 occur here (USDA 2001).

Urgent research needs remain – the exact mechanism of transmission, whether muscle meat or milk, carry infectivity at
too low a level to be measured or detected by existing methods, and what is the infective dose, or whether it is a single
dose or cumulative (IFST, 2001). A member of FDA's BSE Advisory Committee stated that perhaps the most practical
way to gauge the risk presented by gelatin in the US is on a scale of relative risk, where the highest risk would be from
bovine-bone gelatin, produced by a non-alkaline process in countries with BSE or unknown BSE status and the lowest
risk would be from pork skin gelatin from US produced pork (SCRIP # 2228, 2 May 1997).

Another unresolved issue is whether the risk is confined entirely to bovine by-products. Pork has been linked to increased risk of CJD in at least two studies (Hansen, 1999). Another recent study in rodents indicates that the species barrier may not be as protective as previously thought, permitting speculation "...that chickens, pigs, or other livestock fed BSEinfected animal feed may be silent carriers of the disease" (Balter, 2000). One case of nvCJD was a strict vegetarian as of 1985 onward, indicating that the person was exposed before the clinical recognition of BSE in 1986, or there was occult exposure from prepared/processed foods, pharmaceuticals or cosmetics (Collinge, 1999).

850 851

Unfortunately, even fishmeal is a focus of concern in Europe, at least, for cross-contamination with potentially BSEinfected materials from other species of rendered animals. For carnivorous farm fish, such as salmon (a commonly used
fish for isinglass according to the petition), blood meal, liver meal, meat and bone meal, and poultry by-products are all
considered substitutes for fishmeal, although their commercial availability is unknown (Goldburg and Triplett, 1997).

Allergy: Fish and shellfish are among the most commonly allergenic foods. Cod is one of the most commonly allergenic

fish. Cod skins are a common source of fish gelatin (Taylor and Hefle, 2001). Many food ingredients are made from
commonly allergenic sources, including fish gelatin. The threshold to allergenic residues is unknown, although it is
reasonably well documented that food-allergic individuals can react to mere traces of the offending food (Taylor and
Hefle, 2000). While some fish apparently elicit greater reactivity in sensitive individuals, recent evidence indicates that there
is cross-reactivity of such individuals to gelatins from various fishes (Sakaguchi et al, 2000). The Codex Alimentarius says
that fish and shellfish are commonly allergenic and should be listed as ingredients no matter what amount results in the
fish approduct (Taylor and Hefle, 2001).

865

Recent evidence indicates that there is cross-reactivity of individuals sensitive to fish gelatin to bovine gelatin, albeit at a
low level (Sakaguchi et al, 2000). Even though beef and pork are rarely considered to be allergenic foods (Taylor and
Hefle, 2001), bovine and porcine gelatin have been associated with the production of anaphylaxis in vaccinated children
with doses containing as little as 1 mg. of gelatin (Sakaguchi et al, 1996). The CDC regards the risk of gelatin anaphylaxis
seriously enough to recommend that vaccination of children with a history of anaphylaxis to products containing gelatin
should be pursued with extreme caution and suggests that skin-testing is available (US CDC, 2000).

In my opinion, residue tests have limits of detection and the quantum of substance exposure required for inciting anaphylaxis is not known, so definitive statements concerning the presence or absence of any allergenic particles in the

final products can't really be justified, even if the substance is only used for processing.

876

Microbial Contamination: My review of the US Centers for Disease Control (US CDC) database did not reveal any additional references to the risk of Clostridium botulinum infection from fish gelatin beyond those already mentioned in the TAP review. As far as the risk of food-borne microbial contamination from gelatin overall, the risk appears to be low considering the volume of use. A white paper from FDA's Center for Food Safety and Applied Nutrition (September 1999) included a literature review of food-borne disease caused by food handling practices from 1975-1998, indicated that gelatin glazes, such as those in baked goods or aspic glazes used to preserve the shelf-life of cold foods, occasionally were implicated as sources of contamination (Guzewich and Ross, 1999).

Aflatoxins are a problem for farm fish according to FDA, but whether this can result in contamination of meat from animals fed on aflatoxin-infected grain does not seem to have been addressed. Occasionally, however, meat samples do contain aflatoxins, but what the cause is remains the question (FDA, Food Residue Program reports, various years).

888

Environmental Contaminants: In 1991, FDA said that the harvest of farmed fish had increased four-fold from 10 years
 ago (FDA Food Residue Monitoring Program report, 1991). In 1992, FDA said that 10% of the total seafood harvest was
 from aquaculture. The majority species were catfish, trout, salmon, crawfish, shrimp, clams, and mussels. Twenty-five

892 percent of the aquaculture samples tested by FDA had detectable pesticide residues including DDT, dieldrin, and

chlordane at 25, 20 and 10 times the FDA Action Levels, respectively (FDA Food Residue Monitoring Program report,

894 **1992**).

895 896 Farm fish are treated with a number of products such as disinfectants, herbicides, vaccines, parasiticides, and drugs. A fish 897 commonly used for isinglass is catfish (see materials with petition), which also comprises 50% of all aquaculture in the US. 898 These are typically fed a commercially prepared pelleted feed, high in protein, and consisting of soybeans, corn, wheat, and 899 fishmeal (FDA Consumer Magazine, 1991). 900 901 Summary: In general, the human health risks for the 3 sources of gelatin can be summarized as follows: 902 903 Bovine – very low risk of contamination with BSE, low risk of microbial contamination, low risk of environmental 904 contaminants, and low risk of allergenicity; 905 Porcine – negligible risk of BSE, low risk of microbial contamination, low risk of environmental contaminants, and 906 low risk of allergenicity: 907 Fish – only theoretical risk of BSE, some risk of microbial contamination, low risk of environmental contaminants, 908 and some risk of allergenicity. 909 910 **Processing criteria** 911 1. It cannot be produced from a natural source and has no organic ingredients as substitutes. Not withstanding the possibility of organic collagen being commercially available or deriving gelatin from Kosher fish 912 913 skins with minimal processing, my opinion is that the products we are considering fall into the category of 914 "nonagricultural substances," as defined in the Federal Register (65 FR 80,640 [2000]). The key words in that 915 definition that appear to characterize gelatin are "... that the identity of the agricultural product is unrecognizable in 916 the extract, isolate, or fraction." 917 918 2. Its manufacture, use and disposal do not have any adverse effects on the environment and are done in a manner compatible with organic handling as described in section 6513 of the OFPA. 919 In addition to the information provided in the TAP review already, there are four processes that have recently been 920 921 proposed for the sterilization of gelatin by the European Commission (EC) Scientific Steering Committee (SSC) on 922 TSE Risks from Gelatin Derived from Ruminants. Three of them involve various applications of chemicals such as 923 hydrochloric acid, saturated lime, and sodium hydroxide, but a fourth is autoclaving (a heat/pressure/time process). 924 (EC SSC Updated Opinion, 6-7 September 2001) 925 926 The waste materials resulting from the rendering of 50 billion lbs. of animal protein each year are voluminous 927 (USDA, transcript of press conference on release of Harvard BSE risk analysis, 2001). 928 929 3. If the nutritional quality of the food is maintained and the material itself or its breakdown products do not have adverse effects on human 930 health as defined by applicable Federal regulations. 931 I don't have much to add to the TAP Review for this question, except that gelatin's role in food processing does not 932 appear to be nutritive. My comments on the adverse health effects can be found under OFPA criteria 4 above. 933 934 Its primary purpose is not as a preservative or used only to recreate/improve flavors, colors, textures, or nutritive value lost during 4. 935 processing except in the latter case as required by law. My reading indicates that gelatin's function in food processing can be characterized generally as preservative, textural, 936 937 and esthetic enhancement. 938 939 5. Is Generally Recognized As Safe (GRAS) by FDA when used in accordance with Good Manufacturing Practices (GMP), and contains 940 no residues of heavy metals or other contaminants in excess of FDA tolerances. 941 The FDA's advisory committee seems to leave the continued status of gelatin as uniformly GRAS in doubt. As of the 942 spring of 1998, FDA was leaning towards no longer considering gelatin GRAS if its derivation came from BSE 943 countries (SCRIP #2328, 22 April 1998). The 1997 FDA Guidance document states that the majority opinion of the 944 advisory committee is that gelatin should no longer continue to be exempted from restrictions placed on other bovine 945 materials from BSE countries (FDA Guidance 1997). It is still listed as GRAS as of the April 2001 publication of the 946 CFR under the same category as noted in the TAP Review (21 CFR 182.70). 947 948 On the question of whether sulfur dioxide is added as a biocide added to gelatin, I only came across a reference that it 949 protects beer against bacterial spoilage in addition to slowing down the rate at which staleness and haze develop. A 950 new area of research is to induce yeast to produce natural sulfite during the fermentation process (Simpson, paper 951 presented at Institute of Brewing Africa Section workshop, 1999). 952

953 *6.* Its use is compatible with the principles of organic handling.

- 954 The use of gelatin may be counter to principles of organic handling because of the potential for human health risks 955 and consumer deception (albeit unintentional). All sources of gelatin carry some health risks, with fish gelatin 956 probably being the highest in terms of incidence and bovine being the most grave and fear-inducing in terms of 957 consequence. The potential for consumer deception arises because some consumers (e.g., vegetarians and 958 Halal/Kosher adherents) who have an aversion to products formulated with meat or fish (possibly containing traces 959 of these substances), will be ingesting such products unknowingly. 960 961 As food ingredients, gelatin's uses do not appear to be essential enough to outweigh its incompatibility with organic 962 principles due to the human health risks. As clarifying agents for beverages, there is an element of consumer 963 misinformation involved in their use and some unquantifiable public health risk, in which the incidence is low, but the 964 consequences are severe. In addition, there is the concept that what gelatins actually do for beverages is act as 965 preservatives or appearance enhancers, and hence constitute an unnecessary production input incompatible with 966 sustainable agriculture and organic principles, given that gelatin is not an organic ingredient and carries other possible 967 risks. As coatings for animal products, there is some risk of BSE transmission, and alternatives appear to exist or be 968 commercially feasible. 969 970 In addition, several commentators have indicated that animal-derived gelatin is increasingly viewed with disfavor by 971 various sectors of the food industry. More and more brewers will abandon the use of animal finings in the future 972 because risks outweigh benefits (Simpson, Institute of Brewing workshop, 1999). BSE concerns have led 973 manufacturers to replace bovine gelatin with other hydrocolloids (TAP Review). The drawbacks of fish gelatin relative 974 to off-flavors and discoloration have led to gelatin's replacement in many processes (TAP Review). Gelatin remains 975 unpopular in fruit juice clarification because it creates a haze (TAP Review). 976 977 7. There is no other way to produce a similar product without its use and it is used in the minimum quantity required to achieve the process. 978 There are at least three companies pursuing production of genetically engineered gelatin (two in California and one in 979 the Netherlands) (Biocentury Report, 22 January 2001). Fibrogen was expected to begin large-scale commercial 980 production using yeast and genetically altered tobacco plants as of the second half of 2000 (Food Industry News 981 website, 21 December 2001). However, from the brief descriptions that I have seen of these processes in the sources 982 cited as terms such as "transgenic" and "recombinantly" were used, thus apparently bringing them within the purview 983 of "excluded methods" according to my reading of the regulation (65 FR 80, 639 [2000]). 984 985 Coatings - Most gelatin used in vaccines is derived from pigskin, while tablets and capsules use a mixture of bone and 986 pigskin because a capsule made solely from pigskin gelatin would become brittle. As coatings for animal supplements 987 and medications, gelatin may play a role that may be more difficult to duplicate with materials compatible with 988 organic principles. However, some substitutes such as cellulose coatings are mentioned in the TAP Review. 989 Furthermore, non-capsule formulations, e.g. powders, may be feasible alternatives. 990 991 Food uses - Gelatin's "useful" properties appear to be mainly preservative, esthetic, or textural, which can be replaced 992 in general by mechanical processing or biologically inert substances, possibly of organic origin. 993 994 Wine Clarifying Agent - The COABC recommends natural settling and racking but "tolerates": isinglass, non-995 hydrolyzed bone gelatin, bentonite, kaolin, pure casein, diatomaceous earth, fresh egg whites, cellulose plate filters, 996 centrifugation, sterile filtration with membrane filters, and cross-flow filtration. 997 998 Beer Clarifying Agent – As beer ages it develops haze. Older haze control agents such as papain and tannins are being 999 replaced by ones allowing haze control for up to 18 months. This is not necessarily a good thing as it permits 1000 marketers to label their products with longer shelf life than it really deserves because the appearance of freshness is 1001 maintained. Other drawbacks specific to gelatin are that some consumers who are vegetarians or otherwise concerned 1002 about the use of animal products may be averse to these food-processing agents, despite dubious protestations that 1003 they do not survive into the final product – an assertion that can be evaluated by a hydroxyproline test (Simpson, 1004 Institute of Brewing workshop, 1999). 1005
- 1006 Other Beverages – Alternatives are discussed in both the TAP Review and the information submitted with the 1007 petition. 1008

1009 **Recommendation for NOP Listing:**

1010 My recommendation is that gelatin should be prohibited as a Processing Production Aid. If prohibition is not feasible

1011 because there are no better alternatives for certain uses, then the allowed status listing should have an annotation limiting

1012 it to certain uses and requiring precautionary labeling that informs customers that a specific type of gelatin was used in 1013 processing.

1014 1015 [end of TAP Reviewer comments]

10161017 **TAP Conclusion:**

Gelatin can be made from a variety of different sources by a number of different processes. Some gelatin sources are
 agricultural and some are non-agricultural. The petitioned source appears to be non-agricultural. Some of the processes
 result in synthetic reactions and some are more like cooking in ways that the NOSB has not considered to be synthetic
 under OFPA. The process used to prepare the petitioned material appears to be nonsynthetic. Isinglass from wild-caught
 fish also appears to be non-agricultural and nonsynthetic.

1023

1024 Two TAP Reviewers wanted to allow gelatin with limitations; one thought that gelatin should be prohibited for use in 1025 organic handling and processing. The two reviewers who advised that it be recommended for inclusion on the National 1026 List both wanted to allow only gelatin produced by certain manufacturing processes. The review appears to support the inclusion of isinglass and fish gelatin from fish processed with food acids and substances on the National List under 1027 1028 205.605(a) as nonsynthetic and non-agricultural; Type A (porcine) gelatin would be considered agricultural and nonsynthetic if it were processed only with items on the National List. Therefore, porcine gelatin could be listed as 1029 1030 commercially unavailable under 7 CFR 205.606. The NOSB might want to consider further restrictions on bovine sources 1031 of gelatin, to restrict to sources not derived from hides tanned with chromium or treated with other synthetic substances such as pentachlorophenol; or further modified and cross linked. If the NOSB decides to permit use of some types of 1032 gelatin based on production method— such as non-chemically modified or cross-linked, not derived from chromium 1033 1034 tanned hides—processors and certifiers will need to verify that the source meets the standard.

1034

1036 (Although the TAP review does not specifically address livestock applications, gelatin is used as a carrier for vitamin 1037 formulations, similar to use in human food supplements. The NOSB may want to consider whether gelatin would be

- 1038 considered a slaughter by-product, based on the information provided about manufacturing sources.)
- 1039 1040

1046

1053

1064

1068

1041 **References**

- 1042 *Note:* * = *included in packet*
- 1043 Aas, K. 1966. Studies of hypersensitivity to fish. *International Archives of Allergy* 29: 346-363.
- Alais, C. and G. Linden. 1991. *Food Biochemistry*. West Sussex, UK: Ellis Horwood.
- 1047 Anonymous. 1997. US disagrees with Europe on gelatin BSE safety. *Scrip* #2228:16. May 2
- 10481049 Anonymous. 1998. FDA panel recommends relaxing BSE guidance. *Scrip* #2328:15. April 22
- 1050 Ash, M. and I. Ash. 1997. *Handbook of Food Additives.* Brookfield, VT: Gower Publishing. 1051
- 1052 Balter M. 2000. Experts downplay new vCJD fears. *Science* 289: 1663-1665.
- Berg, R.A. 1997. Human recombinant collagen in the milk of transgenic animals. US Patent # 5,667,839. Assigned to
 Collagen Corp.
- Bloom, O.T. 1925. Machine for testing jelly strength of glue, gelatins, and the like. US Patent #1,540,979. Assigned to
 Swift.
- Boehme, W.R. 1982. Protein products of the rendering industry, in I.A. Wolff (ed.) *CRC Handbook of Processing and Utilization in Agriculture. Volume I: Animal Products.* 173-188.
- ^{*} Brewers Resource. 2001. Included in the petition (Gass, 2001). www.brewtek.com/finings_article.html.
- Brox, W. and W. Gabler. 1990. Soft gelatin capsules and processes for their manufacture. US Patent #4,891,229.
- 1067 Budavari, S. 1996. *Merck Index*, (12th ed.) Whitehouse Station, NJ: Merck.
- 1069 California Certified Organic Farmers (CCOF) 2000. *Certification Handbook,* Santa Cruz: CCOF 1070
- 1071 Canadian General Standards Board 1999. CAN/CGSB-32.310-99 National Standard of Canada, Organic Agriculture. Ottawa:
 1072 Canadian General Standards Board.
 1073

1074 1075 1076	C.A.S.P.I.A.N. (Consumers Against Supermarket Privacy Invasion and Numbering). What's happening to livestock? <i>Food</i> <i>Industry News</i> . <u>http://www.nocardis.org/news/livestocknews.shtml</u>
1070 1077 1078	Cauhaupe, P. 1874. Improvement in medicinal capsules. US Patent # 146,803.
1079 1080	Center for Science in the Public Interest. 2001. How now, mad cow? Nutrition Action Healthletter. http://www.cspinet.org/nah/06_01/
1081 1082 1083	Certified Organic Association of British Columbia (COABC). British Columbia Certified Organic Production Operation Policies and Farm Management Standards Version 3 (HTML version). Vernon, BC: COABC.
1084 1085 1086	2002. Wine Processing Standards. <u>http://www.certifiedorganic.bc.ca/Standards/section10.htm</u>
1087 1088 1089	Choi, S.S. and J.M. Regenstein. 2000. Physicochemical and sensory characteristics of fish gelatin. <i>Journal of Food Science</i> 65: 194-199.
1090 1091 1092	Cimiluca, P.A. Soft gelatin capsule compositions. US Patent #5,641,512. Assigned to Proctor & Gamble.
1092 1093 1094	* Code of Federal Regulations, Title 21 CFR Parts 170-199. April 1, 1999. Pp. 486-487.
1094 1095 1096 1097	Codex Alimentarius Commission. 1999. <i>Guidelines for the Production, Processing Labelling and Marketing of Organically Produced Foods.</i> CAC/GL 32-1999. Rome: FAO/WHO.
1098	* Cole, B. 2000. Gelatin, in F.J. Francis (ed.) Encyclopedia of Food Science and Technology 2: 1183-1188. New York: Wiley.
1100 1101	Collinge J. 1999 July 24. Variant Creutzfeldt-Jakob Disease. Lancet 354:317-23.
1101 1102 1103	* Cooper, P. 1845. Improvement in the preparation of portable gelatine. US Patent #4,084.
1105 1104 1105	Corey B. 1991. Life on a fish farm: food safety a priority. FDA Consumer Magazine July/August.
1105 1106 1107 1108	Dartey, C.K. 1993. Application of gellan gum as a fining agent in alcoholic beverages. <i>Research Disclosure</i> 348: 256 (from Food Science Technology Abstracts).
1100 1109 1110 1111	De Martino, M., E. Novembre, L. Galli, A. de Marco, P. Botarelli, E. Marano, and A. Vierucci. 1990. Allergy to different fish species in cod-allergic children. In vivo and in vitro studies. <i>Journal of Allergy and Clinical Immunology</i> 86: 909-914.
1112 1113 1114	Dickenson, E. and G. Lopez. 2001. Comparison of the emulsifying properties of fish gelatin and commercial milk proteins. <i>Journal of Food Science</i> 66: 118-123.
1115	Edelson S. 2001. Fibrogen's BSE play in vaccines. <i>Biocentury, The Bernstein report on Biobusiness</i> . A11. (January 22).
1117 1118 1119	* Ekanayake, A., S.T. Kirksey, and E.P. Putinas Jr. 1994. Process for making a stable green tea extract and product. US Patent #5,427,806. Assigned to Proctor and Gamble.
1120 1121 1122	Eisenmann, L. 1999. <i>The Home Winemaker's Manual</i> . Chapter 14: Fining and Fining Materials. http://home.att.net/~lumeisenman/chapt14.html. Accessed December 10, 2001.
1122 1123 1124 1125	Elliott, R. 2000. Organic alcoholic drinks, in S. Wright and D. McCrea, <i>Handbook of Organic Food Processing and Production</i> (2 nd Ed.). Abingdon, UK: Blackwell Science.
1125 1126 1127 1128	Eun, J-B, H.J. Chung, and J.O. Hearnsberger. 1994. Chemical composition and microflora of channel catfish (<i>Ictalurus punctatus</i>) roe and swim bladder. <i>Journal of Agricultural and Food Chemistry</i> 42: 714-717.
1120 1129 1130	European Community Commission. 1991. On organic production of agricultural products and indications referring thereto on agricultural products and foodstuffs. <i>Official Journal of the European Communities</i> EC 2092/91.
1131 1132 1133	European Community Commission, Scientific Steering Committee. 2001. Updated opinion on the safety with regard to TSE risks of gelatine derived from ruminant bones or hides from cattle, sheep or goats.

1134	
1135 1136	Farmer, D.M., R.L. Henrickson, M.R. Okos, and P.W. Wilson. 1982. Energy requirements for meat production and distribution, in I.A. Wolff (ed.), <i>Handbook of Processing and Utilization in Agriculture</i> 219-287. Boca Raton: CRC.
1137 1138	* Fennema, O. 1996. <i>Food Chemistry</i> . New York: Dekker.
1139 1140	Ferguson, M.W.J. 2001. Wound healing. US Patent #6,319,907. Assigned to Renovo.
1141 1142	FibroGen. 2001. FibroGen's tissue engineering research activities. http://www.fibrogen.com/tissue/research.html.
1143 1144	Accessed December 6.
1145 1146 1147	Foegeding, E.A., T.C. Lanier, and H.O. Hultin. 1996. Characteristics of edible muscle tissue, in O. Fennema (ed.) <i>Food Chemistry</i> (3 rd ed.): 879-942. New York: Dekker.
1148 1149 1150	Food and Nutrition Board, National Academy of Sciences. 1996. <i>Food Chemicals Codex</i> 4 th Ed. Washington, DC: National Academy Press.
1151 1152 1153	Friedman, L.J. and C.G. Greenwald. 1994. Food additives, in J. Kroschwitz (ed.) <i>Kirk-Othmer Encyclopedia of Chemical Technology.</i> 11: 806-833. New York: Wiley.
1154 1155 1156	Garono, L.E., F. Kramer, and A.E. Steigmann. 1956. Gelatin extraction process. US Patent #2,743,265. Assigned to General Foods.
1150 1157 1158 1159	* Gass, T. 2001. Petition for amending the National List of the USDA's National Organic Program. Washington, DC: USDA/AMS/TM/NOP.
1160 1161 1162	* Gilsenan, P.M. and S.B. Ross-Murphy. 2000. Rheological characterisation of gelatins from mammalian and marine sources. <i>Food Hydrocolloids</i> 14: 191-195.
1163 1164 1165 1166	Gold, T.B., R.G. Buice, Jr., R.A. Lodder, and G.A. Digenis. 2001a. Detection of formaldehyde-induced crosslinking in soft elastic gelatin capsules using near-infrared spectrophotometry. http://kerouac.pharm.uky.edu/ASRG/Wave/Soft_Gel/soft_gel_ms.html. Accessed December 6.
1167 1168 1169	2001b. Determination of extent of formaldehyde-induced crosslinking in hard gelatin capsules by near-infrared spectrophotometry. http://www.pharm.uky.edu/ASRG/Wave/Extent/est.htm. Accessed December 6.
1170 1171 1172	Goldburg R and T. Triplett. 1997. Murky waters: environmental effects of aquaculture in the US. New York: Environmental Defense Fund.
1172 1173 1174 1175	Gómez-Guillén, M.C. and P. Montero. 2001. Extraction of gelatin from megrim (<i>Lepidorhombus boscii</i>) skins with several organic acids. <i>Journal of Food Science</i> 66: (abstract only).
1176 1177 1178 1179	Guzewich J., Ross M.P. 1999 September. Evaluation of risks related to microbiological contamination of ready-to-eat food by food preparation workers and the effectiveness of interventions to minimize those risks. White Paper. Food and Drug Administration, Center for Food Safety and Applied Nutrition. http://www.cfsan.fda.gov/~ear/rterisk.html
1180 1181	Hansen M. 1999. Creutzfeldt-Jakob Disease. The New England Journal of Medicine 340: 1687-1688.
1182 1183	Hegenbart, S. 1990. Processing aids: The hidden helpers. <i>Prepared Foods</i> 159(2): 83-84 (February).
1184 1185	Heineman, S.E. 1891. Gelatine capsule. US Patent #447,514. Assigned to the Merz Capsule Co.
1186 1187	Henley, T.F. 1872. Improvement in preserving meats, fish, etc., and making meat extracts. US Patent #131,820.
1188 1189	* Hickman, D., T.J. Sims, C.A. Miles, A.J. Bailey, M. de Mari, and M. Koopmans. 2000. Isinglass/collagen: Denaturation and functionality. <i>Journal of Biotechnology</i> 79: 245-257.
1190 1191 1192 1193	* Hinterwaldner, R. 1977a. Raw Materials, in Ward, A.G. and A. Courts. 1977. <i>The Science and Technology of Gelatin</i> . 295-314. London, UK: Academic.

1194 1195	* 1977b. Technology of Gelatin Manufacture, in Ward, A.G. and A. Courts. 1977. <i>The Science and Technology of Gelatin</i> . 315-364. London, UK: Academic.
1196 1197 1198 1199	* Hood, L.L. 1987. Collagen in sausage casings, in A.M. Pearson, T.R. Dutson, and A.J. Bailey (eds.), <i>Advances in Meat Research</i> 4: 109-129.
1200 1201	* Hudson, C.B. 1994. Gelatine – Relating structure and chemistry to functionality, in K. Nishihari and E. Doi, <i>Food Hydrocolloids: Structures, Properties, and Functions.</i> New York: Plenum.
1202 1203 1204	Hutchinson, K.G., K.R. Garnett, G. Fischer, and N.S. Page. 1994. Soft gelatin capsule shell compositions. US Patent #5,817,323. Assigned to Scherer.
1205 1206 1207	IFST (Institute of Food Science & Technology—UK). 2001 October 16. Bovine Spongiform Encephalopathy (BSE) and Variant Creuzfeldt-Jakob Disease (vCJD) in humans. Information Statement.
1208 1209	Igoe, R.S. 1983. Dictionary of Food Ingredients. New York: Van Nostrand Reinhold.
1210 1211 1212	Imeson, A. (ed.) Thickening and Gelling Agents for Food (2 nd ed). London: Blackie Academic and Professional.
1212 1213 1214	International Federation of Organic Agriculture Movements (IFOAM) <i>IFOAM Basic Standards for Organic Production and Processing</i> . Tholey-Theley, Germany: IFOAM.
1215 1216 1217 1218	Japan Ministry of Agriculture, Forestry and Fisheries (JMAFF). 2001. <i>Japanese Agricultural Standard of Organic Agricultural Products, Notification No. 59</i> , (Unofficial Translation). Tokyo: JMAFF.
1218 1219 1220 1221	Johnson R.T., Gibbs C.J. 1998. Creutzfeldt-Jakob Disease and related transmissible spongiform encephalopathies. <i>New England Journal of Medicine</i> 339: 1994-2004.
1221 1222 1223 1224	Johnson, A.H. and M.S. Peterson. 1974. <i>Encyclopedia of Food Technology</i> . Westport, CT: AVI Press. (Cited in Potter and Hotchkiss, 1998).
1224 1225 1226	Jones, B. E. 1987. History of the hard gelatin capsule, in K. Ridgway (ed.), <i>Hard Capsules-Development and Technology</i> . London: The Pharmaceutical Press, cited in Gold, et al., 2001b.
1227 1228 1229	* Keenan, T.R. 1994. Gelatin, in J. Kroschwitz (ed.) <i>Kirk-Othmer Encyclopedia of Chemical Technology</i> . 12: 406-416. New York: Wiley.
1230 1231 1232	* Keil, H. Method of preparing gelatin or glue. US Patent #2,908,615. Assigned to Armour.
1232 1233 1234	Kelso, J.M., R.T. Jones, and J.W. Yuninger. Anaphylaxis to measles, mumps, and rubella vaccine mediated by IgE in gelatin. <i>Journal of Allergy and Clinical Immunology</i> 91: 867-872.
1235 1236 1237	* Kenney and Ross LTD. Process Flow Diagram. Port Saxson, SN. Canada Bot IWO.
1237 1238 1239	Leather, R.V., M. Sisk, C.J. Dale, and A. Lyddiatt. 1994. Analysis of the collagen and total soluble nitrogen content of isinglass finings by polarimetry. <i>Journal of the Institute of Brewing</i> 100: 331-334.
1240 1241 1242	* Ledward, D.A. 2000. Gelatin, in G.O. Phillips and P.A. Williams <i>Food Hydrocolloids</i> . 67-86. Boca Raton: CRC.
1242 1243 1244 1245	Lee, Y.C. and S.W. Lee. 1999. Quality changes during storage in Korean clear pear juices concentrated by three methods. <i>Journal of Food Quality</i> 22: 565-571.
1245 1246 1247	Leuenberger, B.H. 1991. Investigation of the viscosity and gelation properties of different mammalian and fish gelatins. <i>Food Hydrocolloids</i> 5: 353-361.
1248 1249 1250	Light, N. 1989. Longman Food Science Handbook. Burnt Mill, UK: Longman.
1250 1251 1252 1253	Lin, T.Y. and R.P. Vine.1990. Identification and reduction of ellagic acid in muscadine grape juice. <i>Journal of Food Science</i> 55: 1607-1609, 1613.

1254 1255	Madsen, F. 2000. Substitution of gelatine in low-fat spread: A rheological characterisation, in P.A. Williams and G.O. Phillips, <i>Gums and Stabilisers for the Food Industry</i> 10: 411-420. Cambridge, UK: Royal Society of Chemistry.
1250 1257 1258 1259	Matsumoto, K., H. Matsubara, H. Ukeda, and Y. Osajima. 1989. Determination of sulfite in white wine by amperoteric flow injection analysis with an immobilized sulfite oxidase reactor. <i>Agricultural and Biological Chemistry</i> . 53: 2347-2353.
1260	* McCormick, R. 1987. Exploiting the Novel Properties of Pectin and Gelatin Gels. Prepared Foods 5: 204-205.
1261 1262 1263	* McWilliams, M. 2001. FoodsExperimental Perspectives. (4th ed) Englewood Cliffs, NJ: Prentice Hall.
1263 1264 1265	* Miller, L.G. 1975. Observations on the distribution and ecology of <i>Clostridium botulinum</i> type E in Alaska. <i>Canadian Journal of Microbiology</i> . 21: 920-926.
1260 1267 1268 1269	Naghski, J. 1982. Processing and utilization of hides and skins, in I.A. Wolff (ed.) CRC Handbook of Processing and Utilization in Agriculture. Volume I: Animal Products: 573-605.
1270 1271 1272	Nakayama, T., C. Aizawa, and H. Kuno-Sakai. 1998. A clinical analysis of gelatin allergy and determination of its causal relationship to the previous administration of gelatin-containing acellular pertussis vaccine combined with diphtheria and tetanus toxoids. <i>Journal of Allergy and Clinical Immunology</i> 103: 321-325.
1273 1274	National Toxicology Program. 2001. http://ntp-server.niehs.nih.gov/ Searched September 5, 2001.
1275 1276 1277 1278	Naturland-Association for Organic Agriculture (Naturland). 1999. <i>Naturland Certified Organic General Processing Standards.</i> Gräfelfing, Germany. Naturland.
1278 1279 1280 1281	Navarro, S., A. Barba, J. Oliva, G. Navarro, and F. Pardo. 1999. Evolution of residual levels of six pesticides during elaboration of red wines. Effect of wine-making procedures in their dissappearance (sic). <i>Journal of Agricultural and Food Chemistry</i> 47: 264-270.
1282 1283 1284	Norris, F.A. 1982. Extraction of fats and oils, in D. Swern (ed.), <i>Bailey's Industrial Oil and Fat Products</i> . 175-251. New York: Wiley.
1285 1286 1287 1288	Norton, I. T. Foster, and R. Brown. 1998. The science and technology of fluid gels, in in P.A. Williams and G.O. Phillips, <i>Gums and Stabilisers for the Food Industry</i> 9: 259-268. Cambridge, UK: Royal Society of Chemistry.
1289	Ockerman, H.W. 1991. Food Science Sourcebook. Westport, CT: AVI Publishing.
1290 1291 1292	Oregon Tilth Certified Organic (OTCO). Oregon Tilth Generic Materials List 1999. Salem: OTCO.
1292 1293 1294	Organic Crop Improvement Association (OCIA). 2001. OCIA International Certification Standards. Lincoln, NE: OCIA.
1294 1295 1296 1297	Organic Grapes into Wine Alliance (OGWA). 2001. Standards for Wines Produced from Organically Grown Grapes. http://www.isgnet.com/ogwa/standards.htm (Accessed December 6).
1297 1298 1299 1300	* Palermo, B.T. and S.C. McMillion. 1951. Method of treating gelatin capsules and products resulting therefrom. US Patent #2,578,348. Assigned to Scherer.
1301 1302	Pearson, A.N. and A.J. Bailey. 1985. Advances in Meat Research. Vol. 4 Collagen as a Food. New York: Van Nostrand Reinhold.
1302 1303 1304	* Petersen, B.R. and J.R. Yates. 1977. Gelatin extraction. US Patent #4,064,008. Assigned to Novo.
1304 1305 1306	* Peterson, E.M. and A. Johnson. 1978. Encyclopedia of Food Science Westport, CT: AVI.
1307 1308 1309	Poppe, J. 1997. Gelatin, in A. Imeson (ed.) <i>Thickening and Gelling Agents for Food</i> (2 nd ed.): 144-168. London: Blackie Academic and Professional.
1310	Potter, N.N. and J.H. Hotchkiss. 1998. Food Science (5th ed.) Gaithersburg, MD: Aspen.
1311 1312 1313	Preston H.H. 2001. Mad Cow crisis has wide ramifications in industry. <i>International Herald Tribune</i> . http://www.iht.com (March 17).

1314	
1315	Quest International. 2001. Biofine P19 Technical Specifications. http://www.deltagen.com.au/data/biofinep19beer.doc.
1316	Accessed December 10, 2001.
1317	
1318	Riedl, K., B. Girard, and R.W. Lencki. 1998. Interactions responsible for fouling layer formation during apple juice
1319	microfiltration. Journal of Agricultural and Food Chemistry 46: 2458-2464.
1320	δ
1321	* Rose, P.J. 1991. Gelatin, in I.I. Kroschwitz (ed.) <i>Encyclonedia of Polymer Science and Engineering</i> 7: 488-513. New York: Wiley,
1322	
1323	Rowlands A.G. and D.J. Burrows 2000 Enzyme method of manufacturing gelatin US Patent #6 100 381 Assigned to
1324	Fastman Kodak
1325	
1326	* Sakaguchi M T Nakayama and S Incurve 1996 Food allergy to gelatin in children with systemic immediate-type
1320	reactions including anaphylaxis to vaccines <i>Journal of Allergy and Clinical Immunology</i> 98, 1058-1061
1327	
1320	Sakaguchi M. H. Hori, T. Ebihara, S. Irie, M. Vanagida, and S. Inouve, 1999. Reactivity of the immunoglobulin E in
1320	boying galatin-sansitive children to galating from various animals. <i>Immunology</i> 06: 286-200
1330	bovine getatin sensitive emitten to getatins from various animalis. minimulology 50, 200 250.
1331	Sakaguchi M H Hori S Hattori S Irie A Imai M Vanagida H Miyazawa M Toda and S Inouve 1000 IgF reactivity
1222	Sakaguchi, N. H. 1101, S. Hatton, S. He, A. Indi, N. Tahagua, H. Miyazawa, N. Toua, and S. Houye. 1999. Igit reactivity
1333	to 0.1 and 0.2 chains of bovine type 1 conagen in children with bovine getatin allergy. <i>Journal of Allergy and Children</i>
1334	<i>Immunology</i> 104: 695-699.
1335	
1336	Sakaguchi, M. H. Kaneda, and S. Inouye. 1999. A case of anaphylaxis to gelatin included in erythropoletin products. <i>Journal</i>
1337	or Allergy and Clinical Immunology 103: 349-350.
1338	
1339	Sakaguchi, M. 10da, I. Ebihara, M. S. Irie, H. Hori, A. Imai, M. Yanagida, H. Miyazawa, H. Ohsuna, Z. Ikezawa, and S.
1340	Inouye. 2000. IgE antibody to fish gelatin (type I collagen) in patients with fish allergy. <i>Journal of Allergy and Clinical</i>
1341	Immunology 106: 579-584.
1342	
1343	Sano, Y. M. Itoh, Y. Nakajima, and I. Enomoto. 2001. Soft gelatin capsule. US Patent #6,280,767. Assigned to Toaki
1344	Capsule Co.
1345	
1346	Shaw, P.E. 1994. Fruit juices, in J. Kroschwitz (ed.) Kirk-Othmer Encyclopedia of Chemical Technology. 11 1082-1097. New
1347	York: Wiley.
1348	
1349	Simpson B. 1999. Throwing the baby out with the bath water? Paper presented at Institute of Brewing Africa Section
1350	Waste Management Workshops.
1351	
1352	* Stainsby, G. 1987. Gelatin gels, in A.M. Pearson, T.R. Dutson, and A.J. Bailey (eds.), Advances in Meat Research 4: 209-222.
1353	
1354	Taylor, S.L. and S.L. Hefle. 2000. Update on food allergies and sensitivities. <i>FRI Newsletter</i> 12(1).
1355	
1356	2001. Ingredient and labeling issues associated with allergenic foods. <i>Allergy</i> 56 S67: 64-69.
1357	
1358	Texas Department of Agriculture (TDA). 2000. Texas Department of Agriculture Certification Program Materials List. Austin:
1359	TDA.
1360	
1361	* Torr, D. Method of producing a food product from scrap particles of hide. US Patent #2,676,168. Assigned to Charles
1362	Ely.
1363	Tressler, D.K. and M.A. Joslyn. 1954. The Chemistry and Technology of Fruit and Vegetable Juice Production. New York: AVI.
1364	
1365	Tucker, C.L. 1871. Improvement in preparations for clarifying coffee. US Patent #114,492.
1366	
1367	UK Food Standards Agency. 2001. Report of meeting of Advisory Committee on Animal Feedingstuffs. September.
1368	
1369	* UN Food and Agriculture Organization / World Health Organization. 2002. Edible Gelatin. Joint FAO/WHO
1370	Conterence on Food Additives (JECFA) Food Additives Database.
1371	http://apps3.tao.org/jecta/additive_specs/docs/U/additive-0168.htm
1372	
1373	* USDA/AMS/FVD/PPB. 1982. Grading Manual for Canned Apple Juice Washington, DC: USGPO.

1374 1375 1376	USDA. 2001 November. Q and A on the Harvard center for Risk Analysis study of BSE. http://ww.usda.gov/news/releases/2001/11/0243.htm
1377 1378 1379 1380	USDA. 2001 October 2. Japan: grain and feed – MAFF press release: ban on use of animal protein products for fed and fertilizers – as well as imports. Global Agriculture Information Network (GAIN) report, Foreign Agricultural Service, USDA.
1380	US Centers for Disease Control. 2000 October. Guide to Contraindications to Childhood Vaccinations.
1382 1383 1384 1385	US Environmental Protection Agency (EPA). 1998a. <i>EPCRA Section 313 Reporting Guidance for Food Processors</i> . Washington, DC: EPA Office of Pollution Prevention and Toxics.
1386 1386 1387 1388	1998b. Title III List of Lists: Consolidated List of Chemicals Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA) and Section 112(r) of the Clean Air Act, as Amended. Washington, DC: EPA Office of Solid Waste and Emergency Response.
1389 1390 1301	US FDA. 1990. Modified fast: A sometime solution to a weighty problem. FDA Consumer (April): 10-17.
1391 1392 1393	1997a. FDA Center of Biologics Evaluation and Research, Transmissible Spongiform Encephalopathies Advisory Committees. Transcript of Meeting April 23,
1394 1395 1396	1997b. Guidance for industry: the sourcing and processing of gelatin to reduce the potential risk posed by Bovine Spongiform Encephalopathy (BSE) in FDA-regulated products for human use. (Septermber).
1397 1398 1399 1400	Vanderveen, J.E. and G.V. Mitchell. 1981. Protein quality in relation to FDA regulatory needs, in C.E. Bodwell, J.S. Adkins, and D.T. Hopkins (eds.) <i>Protein Quality in Humans: Assessment and In Vitro Estimation</i> 43-47. Westport, CT: AVI.
1401 1402 1403	* Veis, Arthur. 1964. The Macromolecular Chemistry of Gelatin. Academic Press NY, pp. 6-44.
1403 1404 1405 1406	Vernon, J., S. Glass, and S. Weaver. 1939. Manufacture of gelatin. US Patent #2,184,494. Assigned to Imperial Chemical Industries.
1407 1408 1409 1410	Versari, A., D. Barbanti, G. Potentini, I. Mannazu, A. Salvucci, and S. Galassi. 1998. Physico-chemical characteristics of some oenological gelatins and their action on selected red wine components. <i>Journal of the Science of Food and Agriculture</i> 78: 245-250.
1410 1411 1412 1413	Vine, R., E. Harkness, T. Browning, and C.Wagner. 1999. <i>Winemaking from Grape Growing to Market Place</i> . Gaithersburg, MD: Aspen.
1413 1414 1415	Wahl, R. and D. Kleinhans. 1989. IgE-mediated allergic reactions to fruit-gums and investigation of cross-reactivity between gelatine and modified gelitine-containing products. <i>Clinical and Experimental Allergy</i> 19: 77-80.
1410 1417 1418	Walstra, P. 1996. Dispersed systems: Basic considerations, in O. Fennema (ed.) Food Chemistry. 95-155. New York: Dekker.
1419 1420	Ward, A.G. and A. Courts. 1977. The Science and Technology of Gelatin. London, UK: Academic.
1421 1422	Washington State Department of Agriculture (WSDA). 2001. Organic Crop Production Standards. Olympia: WAC 16-154.
1423 1424 1425	Weber, S.C. and A.H. Herz. 1998. Method for recombinant yeast expression and isolation of water-soluble collagen-type polypeptides. US Patent #5,710,252. Assigned to Eastman Kodak.
1426 1427	Weyland, J. 1899. Capsule. US Patent #648,575. Assigned to C.F. Hausmann.
1428 1429 1430	Winter, R. 1989. A Consumer's Dictionary of Food Additives. (3rd ed.) New York: Crown.
1431	This TAP review was completed pursuant to United States Department of Agriculture Purchase Order 43-6395-0-2900A.